Adaptive Target Localization under Uncertainty using Multi-Agent Deep Reinforcement Learning with Knowledge Transfer
- URL: http://arxiv.org/abs/2501.10924v1
- Date: Sun, 19 Jan 2025 02:58:22 GMT
- Title: Adaptive Target Localization under Uncertainty using Multi-Agent Deep Reinforcement Learning with Knowledge Transfer
- Authors: Ahmed Alagha, Rabeb Mizouni, Shakti Singh, Jamal Bentahar, Hadi Otrok,
- Abstract summary: This work proposes a novel MADRL-based method for target localization in uncertain environments.
The observations of the agents are designed in an optimized manner to capture essential information in the environment.
A Deep Learning model builds on the knowledge from the MADRL model to accurately estimating the target location if it is unreachable.
- Score: 15.605693371392212
- License:
- Abstract: Target localization is a critical task in sensitive applications, where multiple sensing agents communicate and collaborate to identify the target location based on sensor readings. Existing approaches investigated the use of Multi-Agent Deep Reinforcement Learning (MADRL) to tackle target localization. Nevertheless, these methods do not consider practical uncertainties, like false alarms when the target does not exist or when it is unreachable due to environmental complexities. To address these drawbacks, this work proposes a novel MADRL-based method for target localization in uncertain environments. The proposed MADRL method employs Proximal Policy Optimization to optimize the decision-making of sensing agents, which is represented in the form of an actor-critic structure using Convolutional Neural Networks. The observations of the agents are designed in an optimized manner to capture essential information in the environment, and a team-based reward functions is proposed to produce cooperative agents. The MADRL method covers three action dimensionalities that control the agents' mobility to search the area for the target, detect its existence, and determine its reachability. Using the concept of Transfer Learning, a Deep Learning model builds on the knowledge from the MADRL model to accurately estimating the target location if it is unreachable, resulting in shared representations between the models for faster learning and lower computational complexity. Collectively, the final combined model is capable of searching for the target, determining its existence and reachability, and estimating its location accurately. The proposed method is tested using a radioactive target localization environment and benchmarked against existing methods, showing its efficacy.
Related papers
- Diffusion as Reasoning: Enhancing Object Goal Navigation with LLM-Biased Diffusion Model [9.939998139837426]
We propose a new approach to solving the ObjectNav task, by training a diffusion model to learn the statistical distribution patterns of objects in semantic maps.
We also propose the global target bias and local LLM bias methods, where the former can constrain the diffusion model to generate the target object more effectively.
Based on the generated map in the unknown region, the agent sets the predicted location of the target as the goal and moves towards it.
arXiv Detail & Related papers (2024-10-29T08:10:06Z) - Autonomous Goal Detection and Cessation in Reinforcement Learning: A Case Study on Source Term Estimation [24.984938229619075]
Reinforcement Learning has revolutionized decision-making processes in dynamic environments.
The lack of precise environmental information makes it challenging to provide clear feedback signals.
We develop a self-feedback mechanism for autonomous goal detection and cessation upon task completion.
arXiv Detail & Related papers (2024-09-14T21:42:17Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - Self-training through Classifier Disagreement for Cross-Domain Opinion
Target Extraction [62.41511766918932]
Opinion target extraction (OTE) or aspect extraction (AE) is a fundamental task in opinion mining.
Recent work focus on cross-domain OTE, which is typically encountered in real-world scenarios.
We propose a new SSL approach that opts for selecting target samples whose model output from a domain-specific teacher and student network disagrees on the unlabelled target data.
arXiv Detail & Related papers (2023-02-28T16:31:17Z) - Reinforcement Learning for Agile Active Target Sensing with a UAV [10.070339628481445]
This paper develops a deep reinforcement learning approach to plan informative trajectories.
It exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification.
A unique characteristic of our approach is that it is robust to varying amounts of deviations from the true target distribution.
arXiv Detail & Related papers (2022-12-16T01:01:17Z) - Discrete Factorial Representations as an Abstraction for Goal
Conditioned Reinforcement Learning [99.38163119531745]
We show that applying a discretizing bottleneck can improve performance in goal-conditioned RL setups.
We experimentally prove the expected return on out-of-distribution goals, while still allowing for specifying goals with expressive structure.
arXiv Detail & Related papers (2022-11-01T03:31:43Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Teaching Agents how to Map: Spatial Reasoning for Multi-Object
Navigation [11.868792440783055]
We show that learning to estimate metrics quantifying the spatial relationships between an agent at a given location and a goal to reach has a high positive impact in Multi-Object Navigation settings.
A learning-based agent from the literature trained with the proposed auxiliary losses was the winning entry to the Multi-Object Navigation Challenge.
arXiv Detail & Related papers (2021-07-13T12:01:05Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
We investigate whether the Wasserstein-1 distance between a policy's state visitation distribution and a target distribution can be utilized effectively for reinforcement learning tasks.
Our approach, termed Adversarial Intrinsic Motivation (AIM), estimates this Wasserstein-1 distance through its dual objective and uses it to compute a supplemental reward function.
arXiv Detail & Related papers (2021-05-27T17:51:34Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - Reinforcement Learning for UAV Autonomous Navigation, Mapping and Target
Detection [36.79380276028116]
We study a joint detection, mapping and navigation problem for a single unmanned aerial vehicle (UAV) equipped with a low complexity radar and flying in an unknown environment.
The goal is to optimize its trajectory with the purpose of maximizing the mapping accuracy and to avoid areas where measurements might not be sufficiently informative from the perspective of a target detection.
arXiv Detail & Related papers (2020-05-05T20:39:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.