論文の概要: Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
- arxiv url: http://arxiv.org/abs/2501.10967v2
- Date: Wed, 12 Feb 2025 08:10:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-13 13:47:28.846029
- Title: Advancing General Multimodal Capability of Vision-language Models with Pyramid-descent Visual Position Encoding
- Title(参考訳): ピラミッド型視覚位置符号化による視覚言語モデルの汎用マルチモーダル能力の向上
- Authors: Zhanpeng Chen, Mingxiao Li, Ziyang Chen, Nan Du, Xiaolong Li, Yuexian Zou,
- Abstract要約: 視覚言語モデル(VLM)は、汎用人工知能の進歩において顕著な能力を示している。
PyPEは、VLM内の視覚トークンの知覚を高めるために設計された新しいアプローチである。
本手法は,相互関連視覚要素と命令トークンとの相対的距離を減少させる。
- 参考スコア(独自算出の注目度): 64.29499221878746
- License:
- Abstract: Vision-language Models (VLMs) have shown remarkable capabilities in advancing general artificial intelligence, yet the irrational encoding of visual positions persists in inhibiting the models' comprehensive perception performance across different levels of granularity. In this work, we propose Pyramid-descent Visual Position Encoding (PyPE), a novel approach designed to enhance the perception of visual tokens within VLMs. By assigning visual position indexes from the periphery to the center and expanding the central receptive field incrementally, PyPE addresses the limitations of traditional raster-scan methods and mitigates the long-term decay effects induced by Rotary Position Embedding (RoPE). Our method reduces the relative distance between interrelated visual elements and instruction tokens, promoting a more rational allocation of attention weights and allowing for a multi-granularity perception of visual elements and countering the over-reliance on anchor tokens. Extensive experimental evaluations demonstrate that PyPE consistently improves the general capabilities of VLMs across various sizes. Code is available at https://github.com/SakuraTroyChen/PyPE.
- Abstract(参考訳): 視覚言語モデル(VLM)は、汎用人工知能の進歩において顕著な能力を示してきたが、視覚位置の不合理な符号化は、モデルが様々なレベルの粒度の包括的知覚性能を抑制することに留まっている。
本稿では,VLM内の視覚トークンの知覚を高めるために,PyPE(PyPE)を提案する。
PyPEは周囲から中心に視覚的位置指数を割り当て、中心受容野を漸進的に拡大することにより、従来のラスタスキャン法の限界に対処し、ロータリー位置埋め込み(RoPE)によって引き起こされる長期的な減衰効果を緩和する。
本手法は,視覚的要素と命令トークンの相対距離を低減し,より合理的な注意重みの割り当てを促進し,視覚的要素の多粒度認識を可能にし,アンカートークンの過度な依存に対処する。
PyPEは様々な大きさのVLMの一般性能を一貫して向上することを示した。
コードはhttps://github.com/SakuraTroyChen/PyPEで入手できる。
関連論文リスト
- Instruction-Guided Fusion of Multi-Layer Visual Features in Large Vision-Language Models [50.98559225639266]
6つのタスクカテゴリにまたがる18のベンチマークを用いて,異なるエンコーダ層からの視覚的特徴の寄与について検討した。
この結果から,多層構造はタスク依存性の相補的な長所を提供し,均一な融合が最適以下の性能をもたらすことが明らかとなった。
テキスト命令に基づいて動的に多層視覚特徴を統合する命令誘導型視覚アグリゲータを提案する。
論文 参考訳(メタデータ) (2024-12-26T05:41:31Z) - FoPru: Focal Pruning for Efficient Large Vision-Language Models [11.36025001578531]
本稿では、視覚エンコーダから導出される注目に基づくトークンの重要度に基づいて、視覚トークンを抽出する訓練不要なFocal Pruning(FoPru)を提案する。
提案手法は,高い精度を維持しつつ多数の冗長トークンを抽出し,推論効率を大幅に向上させる。
論文 参考訳(メタデータ) (2024-11-21T14:22:38Z) - Spatial-Aware Efficient Projector for MLLMs via Multi-Layer Feature Aggregation [10.468784974994465]
マルチモーダル言語モデル(MLLM)におけるプロジェクタの役割
プロジェクタに関する現在の調査では、効率を改善するために視覚トークンの数を減らすことに重点を置いている。
この問題に対処するために空間認識効率プロジェクタ(SAEP)を提案する。
論文 参考訳(メタデータ) (2024-10-14T09:25:09Z) - Chain-of-Spot: Interactive Reasoning Improves Large Vision-Language Models [81.71651422951074]
CoS(Chain-of-Spot)法は,注目領域に着目して特徴抽出を強化する手法である。
この技術により、LVLMは元の画像解像度を変更することなく、より詳細な視覚情報にアクセスすることができる。
実験の結果,LVLMの視覚的内容の理解と推論能力は著しく改善した。
論文 参考訳(メタデータ) (2024-03-19T17:59:52Z) - MouSi: Poly-Visual-Expert Vision-Language Models [132.58949014605477]
本稿では,個々の視覚エンコーダの能力の相乗化にアンサンブルエキスパート技術を用いることを提案する。
この技術は、異なる視覚専門家の出力の処理を統一する融合ネットワークを導入する。
本実装では,SAMなどのモデルにおける位置占有率を,実質的な4096からより効率的で管理可能な64,さらには1。
論文 参考訳(メタデータ) (2024-01-30T18:09:11Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
我々は,ロバストなビジュアル・アンド・ランゲージナビゲーションのためのスロットアテンションに基づく幾何学的視覚表現を学習するGeoVLNを提案する。
我々はV&L BERTを用いて言語情報と視覚情報の両方を組み込んだクロスモーダル表現を学習する。
論文 参考訳(メタデータ) (2023-05-26T17:15:22Z) - Encoder Fusion Network with Co-Attention Embedding for Referring Image
Segmentation [87.01669173673288]
本稿では,視覚的エンコーダをマルチモーダルな特徴学習ネットワークに変換するエンコーダ融合ネットワーク(EFN)を提案する。
EFNには、マルチモーダル機能の並列更新を実現するコアテンションメカニズムが組み込まれている。
4つのベンチマークデータセットによる実験結果から,提案手法がポストプロセッシングを伴わずに最先端の性能を実現することを示す。
論文 参考訳(メタデータ) (2021-05-05T02:27:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。