論文の概要: Control LLM: Controlled Evolution for Intelligence Retention in LLM
- arxiv url: http://arxiv.org/abs/2501.10979v2
- Date: Thu, 30 Jan 2025 09:17:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-31 15:11:48.234483
- Title: Control LLM: Controlled Evolution for Intelligence Retention in LLM
- Title(参考訳): LLM制御:LLMにおけるインテリジェンス保持のための制御された進化
- Authors: Haichao Wei, Yunxiang Ren, Zhoutong Fu, Aman Lunia, Yi-Lin Chen, Alice Leung, Ya Xu,
- Abstract要約: 並列事前学習および拡張トランスブロックを利用した新しいアプローチである textbfControl LLM を提案する。
CPT(Continuous Pre-Training)とCSFT(Continuous Supervised Fine-Tuning)における制御LDMの有効性を示す実験
既存の手法を超越し、同じベースモデルからチューニングされたオープンソースモデルの中でSOTAを実現する。
- 参考スコア(独自算出の注目度): 4.67235851066221
- License:
- Abstract: Large Language Models (LLMs) demand significant computational resources, making it essential to enhance their capabilities without retraining from scratch. A key challenge in this domain is \textit{catastrophic forgetting} (CF), which hampers performance during Continuous Pre-training (CPT) and Continuous Supervised Fine-Tuning (CSFT). We propose \textbf{Control LLM}, a novel approach that leverages parallel pre-trained and expanded transformer blocks, aligning their hidden-states through interpolation strategies This method effectively preserves performance on existing tasks while seamlessly integrating new knowledge. Extensive experiments demonstrate the effectiveness of Control LLM in both CPT and CSFT. On Llama3.1-8B-Instruct, it achieves significant improvements in mathematical reasoning ($+14.4\%$ on Math-Hard) and coding performance ($+10\%$ on MBPP-PLUS). On Llama3.1-8B, it enhances multilingual capabilities ($+10.6\%$ on C-Eval, $+6.8\%$ on CMMLU, and $+30.2\%$ on CMMLU-0shot-CoT). It surpasses existing methods and achieves SOTA among open-source models tuned from the same base model, using substantially less data and compute. Crucially, these gains are realized while preserving strong original capabilities, with minimal degradation ($<4.3\% \text{on MMLU}$) compared to $>35\%$ in open-source Math and Coding models. This approach has been successfully deployed in LinkedIn's GenAI-powered job seeker and Ads unit products. To support further research, we release the training and evaluation code (https://github.com/linkedin/ControlLLM) along with models trained on public datasets (https://huggingface.co/ControlLLM) to the community.
- Abstract(参考訳): 大規模言語モデル(LLM)は、重要な計算資源を必要とするため、スクラッチから再トレーニングすることなく、その能力を強化することが不可欠である。
この領域における重要な課題は、CPT(Continuous Pre-Training)とCSFT(Continuous Supervised Fine-Tuning)のパフォーマンスを損なう、‘textit{catastrophic forgetting}’(CF)である。
本稿では,並列な事前学習および拡張されたトランスフォーマーブロックを活用する新しい手法である‘textbf{Control LLM}を提案する。
CPTおよびCSFTにおける制御LDMの有効性を示す実験を行った。
Llama3.1-8B-Instructでは、数学的推論(Math-Hardでは+14.4\%)とコーディング性能(MBPP-PLUSでは+10\%)の大幅な改善を実現している。
Llama3.1-8Bでは、C-Evalで+10.6\%、CMMLUで$+6.8\%、CMMLU-0shot-CoTで$+30.2\%の多言語機能を強化している。
既存の手法を超越し、同じベースモデルからチューニングされたオープンソースモデルの中でSOTAを実現する。
重要なことに、これらのゲインは、オープンソースのMathおよびCodingモデルでは$>35\%よりも最小限の劣化(<4.3\% \text{on MMLU}$)で、強力なオリジナル機能を保持しながら実現される。
このアプローチは、LinkedInのGenAIベースの求人サービスとAdsユニット製品にうまくデプロイされている。
さらなる研究を支援するため、トレーニングおよび評価コード(https://github.com/linkedin/ControlLLM)と、公開データセット(https://huggingface.co/ControlLLM)でトレーニングされたモデル(https://huggingface.co/ControlLLM)をコミュニティにリリースします。
関連論文リスト
- S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning [51.84977135926156]
S$2$Rはモデルに推論時の自己検証と自己正当性を教えることによってLLM推論を強化する効率的なフレームワークである。
以上の結果から,Qwen2.5-math-7Bの精度は51.0%から81.6%に向上した。
論文 参考訳(メタデータ) (2025-02-18T13:40:22Z) - CoLA: Compute-Efficient Pre-Training of LLMs via Low-Rank Activation [17.807249890437767]
我々は,CoLAとそのメモリ効率向上実装であるCoLA-Mを紹介する。
モデルアクティベーションにおいて広く観測される低ランク構造を利用して、モデルサイズを削減し、モデルのキャパシティを向上し、トレーニング効率を向上させる。
6000万から70億のパラメータを持つLLaMAモデルの実験では、CoLAはコンピューティングコストを$bf 2pmbtimes$で削減し、フルランクレベルのパフォーマンスを維持しながら、トレーニングスループットを$bf 1.86pmbtimes$で改善している。
論文 参考訳(メタデータ) (2025-02-16T01:05:16Z) - Zeroth-Order Adaptive Neuron Alignment Based Pruning without Re-Training [3.195234044113248]
ネットワークプルーニングのためのemphtop-upアルゴリズムであるtextscNeuroALを提案する。
これは、高密度モデルとスパースバージョンの両方から情報を利用するブロックワイドと行ワイドのスパース性を変更する。
パフォーマンスと実行時のトレードオフの観点から、最新の最先端の手法を一貫して上回ります。
論文 参考訳(メタデータ) (2024-11-11T15:30:16Z) - Embedding Self-Correction as an Inherent Ability in Large Language Models for Enhanced Mathematical Reasoning [13.082135438792475]
自己補正の連鎖は、大規模言語モデルに固有の能力として自己補正を組み込む。
CoSCは一連の自己補正段階を通して機能する。
実験により、CoSCは標準的な数学的データセットの性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-14T17:16:44Z) - Stacking Your Transformers: A Closer Look at Model Growth for Efficient LLM Pre-Training [42.89066583603415]
この作業では、3つの重要な$textitO$bstacleを識別する: 包括的な評価の欠如、(textitO$2) スケーリングのためのテストされていない生存性、(textitO$3) 経験的ガイドラインの欠如。
G_textstack$と呼ばれる深い積み重ね演算子は、トレーニングにおいて顕著な加速を示し、損失が減少し、全体的な性能が向上することを示した。
論文 参考訳(メタデータ) (2024-05-24T08:00:00Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Can Large Language Models Play Games? A Case Study of A Self-Play
Approach [61.15761840203145]
LLM(Large Language Models)は、インターネットからの広範なデータを利用して、幅広い事前知識を格納する。
Monte-Carlo Tree Search (MCTS)は、信頼性の高い意思決定ソリューションを提供する検索アルゴリズムである。
この研究は、ターンベースのゼロサムゲームを効率的に解決するために、MCTSセルフプレイでLLMを活性化させる革新的なアプローチを導入している。
論文 参考訳(メタデータ) (2024-03-08T19:16:29Z) - MobiLlama: Towards Accurate and Lightweight Fully Transparent GPT [87.4910758026772]
近年のLarge Language Models (LLM) 開発において,"Bigger the Better" が主流となっている。
本稿では、リソース制約のあるデバイスに対して、正確かつ効率的なSLM(Small Language Models)を設計する上での課題に対処し、"less is more"パラダイムについて考察する。
論文 参考訳(メタデータ) (2024-02-26T18:59:03Z) - Unleashing the Power of Pre-trained Language Models for Offline Reinforcement Learning [50.9692060692705]
本稿では、オフラインRL用の決定変換器をベースとした一般的なフレームワークである、$textbfMo$tion Control(textbfLaMo$)のための$textbfLanguage Modelsを紹介する。
私たちのフレームワークは4つの重要なコンポーネントを強調しています。
逐次事前学習したLMを用いた決定変換器の初期化(2)LoRA微細調整法を用いて
特に,本手法は,限られたデータサンプルを持つシナリオにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-10-31T16:24:17Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
大規模言語モデル(LLM)は、言語理解と生成において顕著な能力を示している。
タスク非依存であり、元のトレーニングデータセットへの依存を最小限に抑えるという2つの制約の範囲内でLLMの圧縮に取り組む。
LLM-Prunerという名前のこの手法は、非臨界結合構造を選択的に除去する構造プルーニングを採用する。
論文 参考訳(メタデータ) (2023-05-19T12:10:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。