論文の概要: How to Train Your LLM Web Agent: A Statistical Diagnosis
- arxiv url: http://arxiv.org/abs/2507.04103v1
- Date: Sat, 05 Jul 2025 17:12:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-08 15:46:35.014776
- Title: How to Train Your LLM Web Agent: A Statistical Diagnosis
- Title(参考訳): LLM Webエージェントのトレーニング方法:統計的診断
- Authors: Dheeraj Vattikonda, Santhoshi Ravichandran, Emiliano Penaloza, Hadi Nekoei, Megh Thakkar, Thibault Le Sellier de Chezelles, Nicolas Gontier, Miguel Muñoz-Mármol, Sahar Omidi Shayegan, Stefania Raimondo, Xue Liu, Alexandre Drouin, Laurent Charlin, Alexandre Piché, Alexandre Lacoste, Massimo Caccia,
- Abstract要約: LLMウェブエージェントのポストトレーニングにおける計算割当に関する統計学的基礎研究について述べる。
提案手法では,Llama 3.1 8Bの学生を対象に,教師付き微調整(SFT)とオンライン強化学習を用いて,Llama 3.3 70Bの教師を模倣する2段階のパイプラインを用いた。
以上の結果から,SFTとオンラインRLの組み合わせは,WorkArenaとMiniWob++のいずれにおいても,単独でのアプローチよりも一貫して優れていた。
- 参考スコア(独自算出の注目度): 102.04125085041473
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LLM-based web agents have recently made significant progress, but much of it has occurred in closed-source systems, widening the gap with open-source alternatives. Progress has been held back by two key challenges: first, a narrow focus on single-step tasks that overlooks the complexity of multi-step web interactions; and second, the high compute costs required to post-train LLM-based web agents. To address this, we present the first statistically grounded study on compute allocation for LLM web-agent post-training. Our approach uses a two-stage pipeline, training a Llama 3.1 8B student to imitate a Llama 3.3 70B teacher via supervised fine-tuning (SFT), followed by on-policy reinforcement learning. We find this process highly sensitive to hyperparameter choices, making exhaustive sweeps impractical. To spare others from expensive trial-and-error, we sample 1,370 configurations and use bootstrapping to estimate effective hyperparameters. Our results show that combining SFT with on-policy RL consistently outperforms either approach alone on both WorkArena and MiniWob++. Further, this strategy requires only 55% of the compute to match the peak performance of pure SFT on MiniWob++, effectively pushing the compute-performance Pareto frontier, and is the only strategy that can close the gap with closed-source models.
- Abstract(参考訳): LLMベースのWebエージェントは最近大きな進歩を遂げているが、その多くはクローズドソースシステムで発生し、オープンソースの代替品とのギャップを広げている。
ひとつは、マルチステップのWebインタラクションの複雑さを見落としているシングルステップタスクに、もうひとつは、LLMベースのWebエージェントのトレーニング後処理に要する高い計算コストです。
そこで本研究では,LLMウェブエージェントのポストトレーニングにおける計算割当に関する統計的基礎研究について紹介する。
Llama 3.1 8Bの学生に、教師付き微調整(SFT)を通してLlama 3.3 70Bの教師を模倣するよう訓練し、その後に警察による強化学習を行った。
このプロセスはハイパーパラメータの選択に非常に敏感であり、徹底的なスイープを非現実的なものにしている。
高価な試行錯誤を避けるため、1,370の構成をサンプリングし、ブートストラップを使用して効果的なハイパーパラメータを推定する。
以上の結果から,SFTとオンラインRLの組み合わせは,WorkArenaとMiniWob++のいずれにおいても,単独でのアプローチよりも一貫して優れていた。
さらに、この戦略は、MiniWob++上の純粋なSFTのピーク性能にマッチする計算の55%しか必要とせず、計算性能のParetoフロンティアを効果的に推進し、クローズドソースモデルとのギャップを埋める唯一の戦略である。
関連論文リスト
- Ring-lite: Scalable Reasoning via C3PO-Stabilized Reinforcement Learning for LLMs [51.21041884010009]
Ring-liteは、強化学習(RL)により最適化されたMixture-of-Experts(MoE)ベースの大規模言語モデルである
我々のアプローチは、挑戦的なベンチマーク上でのSOTA(State-of-the-art)の小規模推論モデルの性能と一致する。
論文 参考訳(メタデータ) (2025-06-17T17:12:34Z) - On the Emergence of Thinking in LLMs I: Searching for the Right Intuition [34.32871896067864]
自己学習による強化学習(RLSP)というポストトレーニングフレームワークを提案する。
RLSPは、推論プロセスの人間または合成的なデモンストレーションによる微調整、多種多様な効率的な推論行動を促進するための探索報酬信号の使用、報酬ハッキングを予防しながら正当性を確保するための結果検証器によるRLトレーニングの3段階を含む。
数学領域における実証的研究は、RLSPが推論を改善することを示している。
論文 参考訳(メタデータ) (2025-02-10T18:52:04Z) - Dspy-based Neural-Symbolic Pipeline to Enhance Spatial Reasoning in LLMs [29.735465300269993]
大規模言語モデル(LLM)は、様々なタスクにまたがる顕著な能力を示してきたが、しばしば空間的推論に苦しむ。
本稿では LLM と Answer Set Programming (ASP) の反復的フィードバックにより LLM の空間推論能力を高める新しいニューラルシンボリックフレームワークを提案する。
我々は、StepGameとSparQAという2つのベンチマークデータセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2024-11-27T18:04:05Z) - PLANRL: A Motion Planning and Imitation Learning Framework to Bootstrap Reinforcement Learning [13.564676246832544]
PLANRLは、ロボットがいつ古典的な動き計画を使うべきか、いつポリシーを学ぶべきかを選択するためのフレームワークである。
PLANRLは2つの操作モードを切り替える: オブジェクトから離れたときに古典的なテクニックを使ってウェイポイントに到達し、オブジェクトと対話しようとするときに細かい操作制御を行う。
我々は,複数の課題のあるシミュレーション環境と実世界のタスクにまたがってアプローチを評価し,既存手法と比較して適応性,効率,一般化の点で優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-07T19:30:08Z) - Maximize to Explore: One Objective Function Fusing Estimation, Planning,
and Exploration [87.53543137162488]
我々はtextttMEX というオンライン強化学習(オンラインRL)フレームワークを提案する。
textttMEXは、自動的に探索エクスプロイトのバランスをとりながら、見積もりと計画コンポーネントを統合する。
様々な MuJoCo 環境では,ベースラインを安定的なマージンで上回り,十分な報酬を得られる。
論文 参考訳(メタデータ) (2023-05-29T17:25:26Z) - MALib: A Parallel Framework for Population-based Multi-agent
Reinforcement Learning [61.28547338576706]
人口ベースマルチエージェント強化学習(PB-MARL)は、強化学習(RL)アルゴリズムでネストした一連の手法を指す。
PB-MARLのためのスケーラブルで効率的な計算フレームワークMALibを提案する。
論文 参考訳(メタデータ) (2021-06-05T03:27:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。