An analysis of the combination of feature selection and machine learning methods for an accurate and timely detection of lung cancer
- URL: http://arxiv.org/abs/2501.10980v1
- Date: Sun, 19 Jan 2025 08:09:11 GMT
- Title: An analysis of the combination of feature selection and machine learning methods for an accurate and timely detection of lung cancer
- Authors: Omid Shahriyar, Babak Nuri Moghaddam, Davoud Yousefi, Abbas Mirzaei, Farnaz Hoseini,
- Abstract summary: This review looks at how to diagnose lung cancer using sophisticated machine learning techniques like Random Forest (RF) and Support Vector Machine (SVM)
The Chi-squared test is one feature selection strategy that has been successfully applied to find related features and enhance model performance.
- Score: 0.0
- License:
- Abstract: One of the deadliest cancers, lung cancer necessitates an early and precise diagnosis. Because patients have a better chance of recovering, early identification of lung cancer is crucial. This review looks at how to diagnose lung cancer using sophisticated machine learning techniques like Random Forest (RF) and Support Vector Machine (SVM). The Chi-squared test is one feature selection strategy that has been successfully applied to find related features and enhance model performance. The findings demonstrate that these techniques can improve detection efficiency and accuracy while also assisting in runtime reduction. This study produces recommendations for further research as well as ideas to enhance diagnostic techniques. In order to improve healthcare and create automated methods for detecting lung cancer, this research is a critical first step.
Related papers
- Medical AI for Early Detection of Lung Cancer: A Survey [11.90341994990241]
Lung cancer remains one of the leading causes of morbidity and mortality worldwide.
Computer-aided diagnosis (CAD) systems have proven effective in detecting and classifying pulmonary nodules.
Deep learning algorithms have markedly improved the accuracy and efficiency of pulmonary nodule analysis.
arXiv Detail & Related papers (2024-10-18T17:45:42Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
We propose a novel text-guided learning method to achieve highly accurate cancer detection results.
Our approach can leverage clinical knowledge by large-scale pre-trained VLM to enhance generalization ability.
arXiv Detail & Related papers (2024-05-23T07:03:38Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
Grading plays a vital role in breast cancer treatment planning.
The current tumor grading method involves extracting tissue from patients, leading to stress, discomfort, and high medical costs.
This paper examines using optimized CDI$s$ to improve breast cancer grade prediction.
arXiv Detail & Related papers (2024-05-13T15:48:26Z) - Leveraging object detection for the identification of lung cancer [0.15229257192293202]
The YOLOv5 model was employed to train an algorithm capable of detecting cancerous lung lesions.
The trained YOLOv5 model exhibited exceptional proficiency in identifying lung cancer lesions, displaying high accuracy and recall rates.
arXiv Detail & Related papers (2023-05-25T07:53:18Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
The prevalence of breast cancer continues to grow, affecting about 300,000 females in the United States in 2023.
The gold-standard Scarff-Bloom-Richardson (SBR) grade has been shown to consistently indicate a patient's response to chemotherapy.
In this paper, we study the efficacy of deep learning for breast cancer grading based on synthetic correlated diffusion (CDI$s$) imaging.
arXiv Detail & Related papers (2023-04-12T15:08:34Z) - Deep Learning Approach for Early Stage Lung Cancer Detection [0.0]
The survival rate for lung cancer patients is very low compared to other cancer patients due to late diagnostics.
This paper proposed a deep-learning model for early lung cancer prediction and diagnosis from Computed Tomography (CT) scans.
arXiv Detail & Related papers (2023-02-05T18:50:12Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
We investigate enhancing clinical support for breast cancer with deep learning models.
We leverage a volumetric convolutional neural network to learn deep radiomic features from a pre-treatment cohort.
We find that the proposed approach can achieve better performance for both grade and post-treatment response prediction.
arXiv Detail & Related papers (2022-11-10T03:02:12Z) - Machine Learning-based Lung and Colon Cancer Detection using Deep
Feature Extraction and Ensemble Learning [0.9786690381850355]
We introduce a hybrid ensemble feature extraction model to efficiently identify lung and colon cancer.
It integrates deep feature extraction and ensemble learning with high-performance filtering for cancer image datasets.
Our model can detect lung, colon, and (lung and colon) cancer with accuracy rates of 99.05%, 100%, and 99.30%, respectively.
arXiv Detail & Related papers (2022-06-02T15:14:41Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Automatic Generation of Interpretable Lung Cancer Scoring Models from
Chest X-Ray Images [9.525711971667679]
Lung cancer is the leading cause of cancer death worldwide.
Deep learning techniques are effective at automatically diagnosing lung cancer.
These techniques have yet to be clinically approved and adopted by the medical community.
arXiv Detail & Related papers (2020-12-10T04:11:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.