Transfer Learning Strategies for Pathological Foundation Models: A Systematic Evaluation in Brain Tumor Classification
- URL: http://arxiv.org/abs/2501.11014v1
- Date: Sun, 19 Jan 2025 11:18:34 GMT
- Title: Transfer Learning Strategies for Pathological Foundation Models: A Systematic Evaluation in Brain Tumor Classification
- Authors: Ken Enda, Yoshitaka Oda, Zen-ichi Tanei, Wang Lei, Masumi Tsuda, Takahiro Ogawa, Shinya Tanaka,
- Abstract summary: Foundation models pretrained on large-scale pathology datasets have shown promising results across various diagnostic tasks.
We analyzed 252 cases comprising five major tumor types: glioblastoma, astrocytoma, oligodendroglioma, primary central nervous system lymphoma, and metastatic tumors.
We found that foundation models demonstrated robust classification performance with as few as 10 patches per case, challenging the traditional assumption that extensive per-case image sampling is necessary.
- Score: 9.409646394828293
- License:
- Abstract: Foundation models pretrained on large-scale pathology datasets have shown promising results across various diagnostic tasks. Here, we present a systematic evaluation of transfer learning strategies for brain tumor classification using these models. We analyzed 252 cases comprising five major tumor types: glioblastoma, astrocytoma, oligodendroglioma, primary central nervous system lymphoma, and metastatic tumors. Comparing state-of-the-art foundation models with conventional approaches, we found that foundation models demonstrated robust classification performance with as few as 10 patches per case, challenging the traditional assumption that extensive per-case image sampling is necessary. Furthermore, our evaluation revealed that simple transfer learning strategies like linear probing were sufficient, while fine-tuning often degraded model performance. These findings suggest a paradigm shift from extensive data collection to efficient utilization of pretrained features, providing practical implications for implementing AI-assisted diagnosis in clinical pathology.
Related papers
- Advancing Efficient Brain Tumor Multi-Class Classification -- New Insights from the Vision Mamba Model in Transfer Learning [18.20962008262757]
This study investigates the application of pre-trained models for brain tumor classification.
We fine-tuned several mainstream transfer learning models and applied them to the multi-class classification of brain tumors.
Notably, we introduced the Vision Mamba (Vim), a novel network architecture, and applied it for the first time in brain tumor classification.
arXiv Detail & Related papers (2024-10-29T09:08:57Z) - Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - Histopathologic Cancer Detection [0.0]
This work uses the PatchCamelyon benchmark datasets and trains them in a multi-layer perceptron and convolution model to observe the model's performance in terms of precision Recall, F1 Score, Accuracy, and AUC Score.
Also, this paper introduced ResNet50 and InceptionNet models with data augmentation, where ResNet50 is able to beat the state-of-the-art model.
arXiv Detail & Related papers (2023-11-13T19:51:46Z) - Optimizing Brain Tumor Classification: A Comprehensive Study on Transfer
Learning and Imbalance Handling in Deep Learning Models [0.0]
We present a novel deep learning-based approach, called Transfer Learning-CNN, for brain tumor classification using MRI data.
By leveraging a publicly available Brain MRI dataset, the experiment evaluated various transfer learning models for classifying different tumor types.
The proposed strategy, which combines VGG-16 and CNN, achieved an impressive accuracy rate of 96%, surpassing alternative approaches significantly.
arXiv Detail & Related papers (2023-08-13T17:30:32Z) - NeuralSympCheck: A Symptom Checking and Disease Diagnostic Neural Model
with Logic Regularization [59.15047491202254]
symptom checking systems inquire users for their symptoms and perform a rapid and affordable medical assessment of their condition.
We propose a new approach based on the supervised learning of neural models with logic regularization.
Our experiments show that the proposed approach outperforms the best existing methods in the accuracy of diagnosis when the number of diagnoses and symptoms is large.
arXiv Detail & Related papers (2022-06-02T07:57:17Z) - From Modern CNNs to Vision Transformers: Assessing the Performance,
Robustness, and Classification Strategies of Deep Learning Models in
Histopathology [1.8947504307591034]
We develop a new methodology to extensively evaluate a wide range of classification models.
We thoroughly tested the models on five widely used histopathology datasets.
We extend existing interpretability methods and systematically reveal insights of the models' classifications strategies.
arXiv Detail & Related papers (2022-04-11T12:26:19Z) - Multi-Domain Balanced Sampling Improves Out-of-Distribution
Generalization of Chest X-ray Pathology Prediction Models [67.2867506736665]
We propose an idea for out-of-distribution generalization of chest X-ray pathologies that uses a simple balanced batch sampling technique.
We observed that balanced sampling between the multiple training datasets improves the performance over baseline models trained without balancing.
arXiv Detail & Related papers (2021-12-27T15:28:01Z) - Medulloblastoma Tumor Classification using Deep Transfer Learning with
Multi-Scale EfficientNets [63.62764375279861]
We propose an end-to-end MB tumor classification and explore transfer learning with various input sizes and matching network dimensions.
Using a data set with 161 cases, we demonstrate that pre-trained EfficientNets with larger input resolutions lead to significant performance improvements.
arXiv Detail & Related papers (2021-09-10T13:07:11Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Learning Binary Semantic Embedding for Histology Image Classification
and Retrieval [56.34863511025423]
We propose a novel method for Learning Binary Semantic Embedding (LBSE)
Based on the efficient and effective embedding, classification and retrieval are performed to provide interpretable computer-assisted diagnosis for histology images.
Experiments conducted on three benchmark datasets validate the superiority of LBSE under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:36:44Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.