On the correlation between entanglement and the negative sign problem
- URL: http://arxiv.org/abs/2501.11022v1
- Date: Sun, 19 Jan 2025 11:50:34 GMT
- Title: On the correlation between entanglement and the negative sign problem
- Authors: Ping Xu, Yang Shen, Yuan-Yao He, Mingpu Qin,
- Abstract summary: Entanglement entropy characterizes the difficulty of many-body simulation with tensor network state related methods.
Average sign measures the difficulty in many-body simulation for a variety of quantum Monte Carlo methods.
- Score: 14.944299526624881
- License:
- Abstract: In this work, we study the correlation between entanglement and the negative sign problem in quantum Monte Carlo for the simulation of low-dimensional strongly correlated quantum many body systems. Entanglement entropy characterizes the difficulty of many-body simulation with tensor network state related methods, while the average sign measures the difficulty in many-body simulation for a variety of quantum Monte Carlo methods. Although there exist cases where one type of method works better than the other, it is desirable to find the possible correlation between entanglement and average sign for general hard strongly correlated systems regarding computational complexity. We take the doped two-dimensional Hubbard model as an example and numerically calculate the doping evolution of both the entanglement in the ground state with Density Matrix Renormalization Group and the average sign in the Auxiliary Field Quantum Monte Carlo simulation at low temperature. The results show that they are indeed correlated. The entanglement entropy (average sign) shows a peak (dip) around 20% doping, indicating that it is the difficult region for both methods. The vicinity of 20% doping is also the most intriguing region in both the Hubbard model and cuprate high-Tc superconductors where competing states with close energy intertwine with each other. Recognizing the correlation between entanglement and average sign provides new insight into our understanding of the difficulty in the simulation of strongly correlated quantum many-body systems.
Related papers
- Probing the magnetic origin of the pseudogap using a Fermi-Hubbard quantum simulator [30.29758729899544]
In strongly correlated materials, interacting electrons are entangled and form collective quantum states.
Superconductivity emerges at low doping out of an unusual pseudogap'' metallic state above the critical temperature.
We use a quantum gas microscope Fermi-Hubbard simulator to explore a wide range of doping levels and temperatures.
arXiv Detail & Related papers (2024-12-23T18:58:01Z) - High-efficiency quantum Monte Carlo algorithm for extracting entanglement entropy in interacting fermion systems [4.758738320755899]
We propose a fermionic quantum Monte Carlo algorithm based on the incremental technique along physical parameters.
We show the effectiveness of the algorithm and show the high precision.
In this simulation, the calculated scaling behavior of the entanglement entropy elucidates the different phases of the Fermi surface and Goldstone modes.
arXiv Detail & Related papers (2024-09-30T07:07:51Z) - Complexity of two-level systems [0.0]
Complexity of two-level systems, e.g. spins, qubits, magnetic moments etc, are analysed.
The complexity is defined as the difference between the Shannon-entropy and the second order R'enyi-entropy.
It is shown that the system attains maximal complexity for special choice of control parameters.
arXiv Detail & Related papers (2024-08-10T13:47:18Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Entanglement and Correlation Spreading in non-Hermitian Spin Chains [0.0]
Non-Hermitian quantum many-body systems are attracting widespread interest for their exotic properties.
We study how quantum information and correlations spread under a quantum quench generated by a prototypical non-Hermitian spin chain.
arXiv Detail & Related papers (2022-01-24T19:00:02Z) - Lefschetz Thimble Quantum Monte Carlo for Spin Systems [0.0]
We use Lefschetz thimbles to overcome the intrinsic sign problem in spin coherent state path integral Monte Carlo.
We demonstrate its effectiveness at lessening the sign problem in this setting, despite the fact that the initial mapping to spin coherent states introduces its own sign problem.
arXiv Detail & Related papers (2021-10-20T18:00:04Z) - Entropy Production and the Role of Correlations in Quantum Brownian
Motion [77.34726150561087]
We perform a study on quantum entropy production, different kinds of correlations, and their interplay in the driven Caldeira-Leggett model of quantum Brownian motion.
arXiv Detail & Related papers (2021-08-05T13:11:05Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Gaussian Process States: A data-driven representation of quantum
many-body physics [59.7232780552418]
We present a novel, non-parametric form for compactly representing entangled many-body quantum states.
The state is found to be highly compact, systematically improvable and efficient to sample.
It is also proven to be a universal approximator' for quantum states, able to capture any entangled many-body state with increasing data set size.
arXiv Detail & Related papers (2020-02-27T15:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.