論文の概要: Investigating the Impact of Language-Adaptive Fine-Tuning on Sentiment Analysis in Hausa Language Using AfriBERTa
- arxiv url: http://arxiv.org/abs/2501.11023v1
- Date: Sun, 19 Jan 2025 11:52:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:23:20.391309
- Title: Investigating the Impact of Language-Adaptive Fine-Tuning on Sentiment Analysis in Hausa Language Using AfriBERTa
- Title(参考訳): AfriBERTaを用いたハウサ語の感性分析における言語適応型ファインチューニングの影響の検討
- Authors: Sani Abdullahi Sani, Shamsuddeen Hassan Muhammad, Devon Jarvis,
- Abstract要約: 感情分析(SA)は、自然言語処理(NLP)において、テキストで表される感情を識別することで重要な役割を担っている。
本研究では, 言語適応ファインチューニング(LAFT)の有効性について検討した。
- 参考スコア(独自算出の注目度): 2.5055584842618175
- License:
- Abstract: Sentiment analysis (SA) plays a vital role in Natural Language Processing (NLP) by ~identifying sentiments expressed in text. Although significant advances have been made in SA for widely spoken languages, low-resource languages such as Hausa face unique challenges, primarily due to a lack of digital resources. This study investigates the effectiveness of Language-Adaptive Fine-Tuning (LAFT) to improve SA performance in Hausa. We first curate a diverse, unlabeled corpus to expand the model's linguistic capabilities, followed by applying LAFT to adapt AfriBERTa specifically to the nuances of the Hausa language. The adapted model is then fine-tuned on the labeled NaijaSenti sentiment dataset to evaluate its performance. Our findings demonstrate that LAFT gives modest improvements, which may be attributed to the use of formal Hausa text rather than informal social media data. Nevertheless, the pre-trained AfriBERTa model significantly outperformed models not specifically trained on Hausa, highlighting the importance of using pre-trained models in low-resource contexts. This research emphasizes the necessity for diverse data sources to advance NLP applications for low-resource African languages. We published the code and the dataset to encourage further research and facilitate reproducibility in low-resource NLP here: https://github.com/Sani-Abdullahi-Sani/Natural-Language-Processing/blob/main/Sentiment%20Analysis%20 for%20Low%20Resource%20African%20Languages
- Abstract(参考訳): 感性分析(SA)は、自然言語処理(NLP)において、テキストで表される感情を識別することで重要な役割を担っている。
広く話されている言語に対するSAでは大きな進歩があったが、Hausaのような低リソース言語は、主にデジタルリソースの欠如により、固有の課題に直面している。
本研究では, 言語適応ファインチューニング(LAFT)の有効性について検討した。
まずモデルの言語機能を拡張するために多種多様なラベル付きコーパスをキュレートし、続いてLAFTを適用してAfriBERTaをハウサ語のニュアンスに適応させる。
適応モデルは、ラベル付きNaijaSenti感情データセットに基づいて微調整され、そのパフォーマンスを評価する。
以上の結果から,LAFTは非公式なソーシャルメディアデータではなく,公式なHausaテキストを使用することによって,緩やかな改善をもたらす可能性が示唆された。
しかしながら、事前訓練されたAfriBERTaモデルは、Hausaで特別に訓練されていないモデルよりも著しく優れており、低リソース環境で事前訓練されたモデルを使用することの重要性を強調している。
本研究は,低リソースアフリカ言語へのNLP適用を促進するための多様なデータソースの必要性を強調した。
https://github.com/Sani-Abdullahi-Sani/Natural-Language-Processing/blob/main/Sentiment%20Analysis%20 for%20Low%20African%20Languages
関連論文リスト
- Evaluating Standard and Dialectal Frisian ASR: Multilingual Fine-tuning and Language Identification for Improved Low-resource Performance [9.624005980086707]
最先端の手法では、大量のデータに事前訓練されたモデルをラベル付きデータを使って微調整する自己教師ありトランスファーラーニングをデプロイする。
我々は,多言語微調整データと補助言語識別タスクを用いて,Frisian ASRの性能を向上させることができることを示す。
論文 参考訳(メタデータ) (2025-02-07T12:42:46Z) - A Multilingual Sentiment Lexicon for Low-Resource Language Translation using Large Languages Models and Explainable AI [0.0]
南アフリカとDRCは、ズールー語、セペディ語、アフリカーンス語、フランス語、英語、ツィルバ語などの言語と共に複雑な言語景観を呈している。
この研究はフランス語とツィルバ語用に設計された多言語辞書を開発し、英語、アフリカーンス語、セペディ語、ズールー語への翻訳を含むように拡張された。
総合的なテストコーパスは、感情を予測するためにトレーニングされた機械学習モデルを使用して、翻訳と感情分析タスクをサポートするために作成される。
論文 参考訳(メタデータ) (2024-11-06T23:41:18Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットにおけるNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - Conversations in Galician: a Large Language Model for an
Underrepresented Language [2.433983268807517]
本稿では,ガリシア語に対する自然言語処理(NLP)を強化するために設計された2つの新しい資源を紹介する。
52,000の指示と実演を含むアルパカデータセットのガリシア適応について述べる。
データセットユーティリティのデモとして、元々モデルでサポートされていない言語であるGalicianで、LLaMA-7Bの理解と応答を微調整した。
論文 参考訳(メタデータ) (2023-11-07T08:52:28Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
この研究は、明らかな相違を明らかにし、マインドフルなデータ収集を通じてそれらに対処する可能性のある経路を特定することによって、方言NLPの分野を強化する基盤となる。
論文 参考訳(メタデータ) (2023-10-23T17:42:01Z) - Arabic Sentiment Analysis with Noisy Deep Explainable Model [48.22321420680046]
本稿では,アラビア語の感情分類フレームワークを提案する。
提案フレームワークは,局所的な代理説明可能なモデルをトレーニングすることで,特定の予測を説明することができる。
アラビアサデータセットの公開ベンチマーク実験を行った。
論文 参考訳(メタデータ) (2023-09-24T19:26:53Z) - NusaWrites: Constructing High-Quality Corpora for Underrepresented and
Extremely Low-Resource Languages [54.808217147579036]
インドネシアの地方言語について事例研究を行う。
データセット構築におけるオンラインスクラップ,人文翻訳,および母語話者による段落作成の有効性を比較した。
本研究は,母語話者による段落作成によって生成されたデータセットが,語彙的多様性と文化的内容の点で優れた品質を示すことを示す。
論文 参考訳(メタデータ) (2023-09-19T14:42:33Z) - Can Character-based Language Models Improve Downstream Task Performance
in Low-Resource and Noisy Language Scenarios? [0.0]
我々は、ナラビジ(NArabizi)と呼ばれるラテン文字の拡張を用いて書かれた北アフリカ方言のアラビア語に焦点を当てている。
ナラビジの99k文のみを学習し,小さな木バンクで微調整したキャラクタベースモデルは,大規模多言語モデルとモノリンガルモデルで事前学習した同じアーキテクチャで得られたものに近い性能を示す。
論文 参考訳(メタデータ) (2021-10-26T14:59:16Z) - Low-Resource Language Modelling of South African Languages [6.805575417034369]
南アフリカの低資源言語におけるボカブラリ言語モデルの性能を評価する。
本研究では,n-gramモデル,feedforwardニューラルネットワーク,recurrent neural network (rnn),transformerの異種を小規模データセット上で評価する。
全体的に、よく規則化されたRNNは、2つのisiZuluと1つのSepediデータセットで最高のパフォーマンスを提供します。
論文 参考訳(メタデータ) (2021-04-01T21:27:27Z) - Unsupervised Domain Adaptation of a Pretrained Cross-Lingual Language
Model [58.27176041092891]
最近の研究は、大規模未ラベルテキストに対する言語間言語モデルの事前学習が、大幅な性能向上をもたらすことを示唆している。
本稿では,絡み合った事前学習した言語間表現からドメイン固有の特徴を自動的に抽出する,教師なし特徴分解手法を提案する。
提案モデルでは、相互情報推定を利用して、言語間モデルによって計算された表現をドメイン不変部分とドメイン固有部分に分解する。
論文 参考訳(メタデータ) (2020-11-23T16:00:42Z) - Building Low-Resource NER Models Using Non-Speaker Annotation [58.78968578460793]
言語横断的な手法はこれらの懸念に対処する上で顕著な成功を収めた。
本稿では,Non-Speaker''(NS)アノテーションを用いた低リソース名前付きエンティティ認識(NER)モデル構築のための補完的アプローチを提案する。
NSアノテータの使用は、現代の文脈表現上に構築された言語間メソッドよりも、一貫した結果が得られることを示す。
論文 参考訳(メタデータ) (2020-06-17T03:24:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。