論文の概要: A Multilingual Sentiment Lexicon for Low-Resource Language Translation using Large Languages Models and Explainable AI
- arxiv url: http://arxiv.org/abs/2411.04316v1
- Date: Wed, 06 Nov 2024 23:41:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:40:25.342950
- Title: A Multilingual Sentiment Lexicon for Low-Resource Language Translation using Large Languages Models and Explainable AI
- Title(参考訳): 大規模言語モデルと説明可能なAIを用いた低リソース言語翻訳のための多言語感性辞書
- Authors: Melusi Malinga, Isaac Lupanda, Mike Wa Nkongolo, Phil van Deventer,
- Abstract要約: 南アフリカとDRCは、ズールー語、セペディ語、アフリカーンス語、フランス語、英語、ツィルバ語などの言語と共に複雑な言語景観を呈している。
この研究はフランス語とツィルバ語用に設計された多言語辞書を開発し、英語、アフリカーンス語、セペディ語、ズールー語への翻訳を含むように拡張された。
総合的なテストコーパスは、感情を予測するためにトレーニングされた機械学習モデルを使用して、翻訳と感情分析タスクをサポートするために作成される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: South Africa and the Democratic Republic of Congo (DRC) present a complex linguistic landscape with languages such as Zulu, Sepedi, Afrikaans, French, English, and Tshiluba (Ciluba), which creates unique challenges for AI-driven translation and sentiment analysis systems due to a lack of accurately labeled data. This study seeks to address these challenges by developing a multilingual lexicon designed for French and Tshiluba, now expanded to include translations in English, Afrikaans, Sepedi, and Zulu. The lexicon enhances cultural relevance in sentiment classification by integrating language-specific sentiment scores. A comprehensive testing corpus is created to support translation and sentiment analysis tasks, with machine learning models such as Random Forest, Support Vector Machine (SVM), Decision Trees, and Gaussian Naive Bayes (GNB) trained to predict sentiment across low resource languages (LRLs). Among them, the Random Forest model performed particularly well, capturing sentiment polarity and handling language-specific nuances effectively. Furthermore, Bidirectional Encoder Representations from Transformers (BERT), a Large Language Model (LLM), is applied to predict context-based sentiment with high accuracy, achieving 99% accuracy and 98% precision, outperforming other models. The BERT predictions were clarified using Explainable AI (XAI), improving transparency and fostering confidence in sentiment classification. Overall, findings demonstrate that the proposed lexicon and machine learning models significantly enhance translation and sentiment analysis for LRLs in South Africa and the DRC, laying a foundation for future AI models that support underrepresented languages, with applications across education, governance, and business in multilingual contexts.
- Abstract(参考訳): 南アフリカとコンゴ民主共和国(DRC)は、ズールー語、セペディ語、アフリカーンス語、フランス語、英語、ツィルバ語(Ciluba)などの言語と共に複雑な言語環境を提示しており、正確なラベル付きデータがないため、AIによる翻訳と感情分析システムに固有の課題を生み出している。
この研究は、フランス語とツィルバ語用に設計された多言語辞書を開発し、英語、アフリカ語、セペディ語、ズールー語への翻訳を含むように拡張することで、これらの課題に対処することを目指している。
語彙は、言語固有の感情スコアを統合することにより、感情分類における文化的関連性を高める。
Random Forest、Support Vector Machine(SVM)、Decision Trees、Gaussian Naive Bayes(GNB)といった機械学習モデルを使用して、低リソース言語(LRL)間の感情を予測するためにトレーニングされた、翻訳と感情分析タスクをサポートする包括的なテストコーパスが作成されている。
特にランダムフォレストモデルでは、感情の極性を捉え、言語固有のニュアンスを効果的に扱えるようにした。
さらに、多言語モデル(LLM)であるBERTによる双方向エンコーダ表現を用いて、文脈に基づく感情を高精度に予測し、99%の精度と98%の精度を達成し、他のモデルよりも優れている。
BERT予測は、説明可能なAI(XAI)を使用して明確化し、透明性を改善し、感情分類の信頼性を高める。
全体として、提案された語彙モデルと機械学習モデルは、南アフリカとDRCにおけるLRLの翻訳と感情分析を著しく向上させ、教育、ガバナンス、ビジネスを多言語でカバーする、表現不足言語をサポートする将来のAIモデルの基礎を築いた。
関連論文リスト
- Boosting the Capabilities of Compact Models in Low-Data Contexts with Large Language Models and Retrieval-Augmented Generation [2.9921619703037274]
本稿では,形態素解析の言語タスクにおいて,より小さなモデルの出力を補正するために,大言語モデル(LLM)を基盤とした検索拡張生成(RAG)フレームワークを提案する。
データ不足や訓練可能なパラメータの不足を補うために,言語情報を活用するとともに,LLMを通して解釈・蒸留された記述文法からの入力を許容する。
コンパクトなRAG支援モデルがデータスカース設定に極めて有効であることを示し、このタスクとターゲット言語に対する新しい最先端技術を実現する。
論文 参考訳(メタデータ) (2024-10-01T04:20:14Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
本稿では,多言語文脈における知識編集技術を検討することにより,言語的平等の必要性を戦略的に識別する。
Mistral, TowerInstruct, OpenHathi, Tamil-Llama, Kan-Llamaなどのモデルの性能を,英語,ドイツ語,フランス語,イタリア語,スペイン語,ヒンディー語,タミル語,カンナダ語を含む言語で評価した。
論文 参考訳(メタデータ) (2024-06-17T01:54:27Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
大規模言語モデルの英語と非英語のパフォーマンスのギャップを埋めるための質問アライメントフレームワークを提案する。
実験結果から、さまざまな推論シナリオ、モデルファミリー、サイズにわたって、多言語のパフォーマンスを向上できることが示された。
我々は、表現空間、生成された応答とデータスケールを分析し、質問翻訳訓練がLLM内の言語アライメントをどのように強化するかを明らかにする。
論文 参考訳(メタデータ) (2024-05-02T14:49:50Z) - Investigating Neural Machine Translation for Low-Resource Languages: Using Bavarian as a Case Study [1.6819960041696331]
本稿では,ドイツ語とバイエルン語の自動翻訳システムを開発するために,最先端のニューラルマシン翻訳技術を再考する。
我々の実験では、バックトランスレーションとトランスファー学習を適用して、より多くのトレーニングデータを自動生成し、より高い翻訳性能を達成する。
ボニフェロニ補正による統計的意義は驚くほど高いベースラインシステムを示し、バックトランスレーションにより大幅な改善がもたらされた。
論文 参考訳(メタデータ) (2024-04-12T06:16:26Z) - Towards a Deep Understanding of Multilingual End-to-End Speech
Translation [52.26739715012842]
我々は22言語以上で訓練された多言語エンドツーエンド音声翻訳モデルで学習した表現を解析する。
我々は分析から3つの大きな発見を得た。
論文 参考訳(メタデータ) (2023-10-31T13:50:55Z) - Overcoming Language Disparity in Online Content Classification with
Multimodal Learning [22.73281502531998]
大規模言語モデルは、テキスト検出と分類タスクのための最先端のソリューションを開発するための標準となっている。
高度な計算技術と資源の開発は、英語に不相応に焦点が当てられている。
マルチモーダル機械学習を用いて画像に含まれる情報を統合するという約束を探求する。
論文 参考訳(メタデータ) (2022-05-19T17:56:02Z) - Geographical Distance Is The New Hyperparameter: A Case Study Of Finding
The Optimal Pre-trained Language For English-isiZulu Machine Translation [0.0]
本研究は,英語訳フレームワークにおける翻訳学習の潜在的なメリットについて考察する。
1つの多言語コーパスを含む8つの言語コーパスから得られた結果から,isiXa-isiZuluがすべての言語より優れた結果を得た。
我々はまた,事前学習されたモデルに対する言語選択を容易にする新しい係数である,Nasir's Geographical Distance Coefficient (NGDC) も導出した。
論文 参考訳(メタデータ) (2022-05-17T20:41:25Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
本稿では, AM2iCo, Adversarial and Multilingual Meaning in Contextを提案する。
言語間文脈における単語の意味の同一性を理解するために、最先端(SotA)表現モデルを忠実に評価することを目的としている。
その結果、現在のSotAプリトレーニングエンコーダは人間のパフォーマンスにかなり遅れていることが明らかとなった。
論文 参考訳(メタデータ) (2021-04-17T20:23:45Z) - Improving the Lexical Ability of Pretrained Language Models for
Unsupervised Neural Machine Translation [127.81351683335143]
クロスリンガルプリトレーニングは、2つの言語の語彙的表現と高レベル表現を整列させるモデルを必要とする。
これまでの研究では、これは表現が十分に整合していないためです。
本稿では,語彙レベルの情報で事前学習するバイリンガルマスク言語モデルを,型レベルのクロスリンガルサブワード埋め込みを用いて強化する。
論文 参考訳(メタデータ) (2021-03-18T21:17:58Z) - Cross-lingual Machine Reading Comprehension with Language Branch
Knowledge Distillation [105.41167108465085]
言語間機械読解(CLMRC)は、ローソース言語に大規模なデータセットがないため、依然として難しい問題である。
本稿では,Language Branch Machine Reading (LBMRC) という新しい拡張手法を提案する。
LBMRCは、個々の言語に精通したMultiple Machine Read comprehension (MRC)モデルを訓練する。
複数の言語分岐モデルから全ての対象言語に対する単一モデルへのアマルガメート知識の多言語蒸留アプローチを考案する。
論文 参考訳(メタデータ) (2020-10-27T13:12:17Z) - XCOPA: A Multilingual Dataset for Causal Commonsense Reasoning [68.57658225995966]
XCOPA (Cross-lingual Choice of Plausible Alternatives) は11言語における因果コモンセンス推論のための多言語データセットである。
提案手法は,翻訳に基づく転送と比較して,現在の手法の性能が低下していることを明らかにする。
論文 参考訳(メタデータ) (2020-05-01T12:22:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。