Beyond Any-Shot Adaptation: Predicting Optimization Outcome for Robustness Gains without Extra Pay
- URL: http://arxiv.org/abs/2501.11039v3
- Date: Sun, 16 Feb 2025 08:38:16 GMT
- Title: Beyond Any-Shot Adaptation: Predicting Optimization Outcome for Robustness Gains without Extra Pay
- Authors: Qi Cheems Wang, Zehao Xiao, Yixiu Mao, Yun Qu, Jiayi Shen, Yiqin Lv, Xiangyang Ji,
- Abstract summary: We present Model Predictive Task Sampling (MPTS) to establish connections between the task space and adaptation risk landscape.
MPTS characterizes the task episodic information with a generative model and directly predicts task-specific adaptation risk values from posterior inference.
MPTS can be seamlessly integrated into zero-shot, few-shot, and many-shot learning paradigms.
- Score: 46.92143725900031
- License:
- Abstract: The foundation model enables general-purpose problem-solving and enjoys desirable rapid adaptation due to its adopted cross-task generalization paradigms, e.g., pretraining, meta-training, and finetuning. Recent advances in these paradigms show the crucial role of challenging tasks' prioritized sampling in enhancing adaptation robustness. However, ranking task difficulties exhausts massive task queries to evaluate, thus computation and annotation intensive, which is typically unaffordable in practice. This work underscores the criticality of both adaptation robustness and learning efficiency, especially in scenarios where tasks are risky or costly to evaluate, e.g., policy evaluations in Markov decision processes (MDPs) or inference with large models. To this end, we present Model Predictive Task Sampling (MPTS) to establish connections between the task space and adaptation risk landscape to form a theoretical guideline in robust active task sampling. MPTS characterizes the task episodic information with a generative model and directly predicts task-specific adaptation risk values from posterior inference. The developed risk learner can amortize expensive evaluation and provably approximately rank task difficulties in the pursuit of task robust adaptation. MPTS can be seamlessly integrated into zero-shot, few-shot, and many-shot learning paradigms. Extensive experimental results are conducted to exhibit the superiority of the proposed framework, remarkably increasing task adaptation robustness and retaining learning efficiency in contrast to existing state-of-the-art (SOTA) methods. The code is available at the project site https://github.com/thu-rllab/MPTS.
Related papers
- Robust Fast Adaptation from Adversarially Explicit Task Distribution Generation [45.568230152488276]
We consider explicitly generative modeling task distributions placed over task identifiers.
We propose robustifying fast adaptation from adversarial training.
This work has practical implications, particularly in dealing with task distribution shifts in meta-learning.
arXiv Detail & Related papers (2024-07-28T16:23:55Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - Active Instruction Tuning: Improving Cross-Task Generalization by
Training on Prompt Sensitive Tasks [101.40633115037983]
Instruction tuning (IT) achieves impressive zero-shot generalization results by training large language models (LLMs) on a massive amount of diverse tasks with instructions.
How to select new tasks to improve the performance and generalizability of IT models remains an open question.
We propose active instruction tuning based on prompt uncertainty, a novel framework to identify informative tasks, and then actively tune the models on the selected tasks.
arXiv Detail & Related papers (2023-11-01T04:40:05Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - Semantically Aligned Task Decomposition in Multi-Agent Reinforcement
Learning [56.26889258704261]
We propose a novel "disentangled" decision-making method, Semantically Aligned task decomposition in MARL (SAMA)
SAMA prompts pretrained language models with chain-of-thought that can suggest potential goals, provide suitable goal decomposition and subgoal allocation as well as self-reflection-based replanning.
SAMA demonstrates considerable advantages in sample efficiency compared to state-of-the-art ASG methods.
arXiv Detail & Related papers (2023-05-18T10:37:54Z) - Meta-Reinforcement Learning Based on Self-Supervised Task Representation
Learning [23.45043290237396]
MoSS is a context-based Meta-reinforcement learning algorithm based on Self-Supervised task representation learning.
On MuJoCo and Meta-World benchmarks, MoSS outperforms prior in terms of performance, sample efficiency (3-50x faster), adaptation efficiency, and generalization.
arXiv Detail & Related papers (2023-04-29T15:46:19Z) - Learning to generate imaginary tasks for improving generalization in
meta-learning [12.635773307074022]
The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks.
Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks.
In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss.
arXiv Detail & Related papers (2022-06-09T08:21:05Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
We introduce SUPERB-SG, a new benchmark to evaluate pre-trained models across various speech tasks.
We use a lightweight methodology to test the robustness of representations learned by pre-trained models under shifts in data domain.
We also show that the task diversity of SUPERB-SG coupled with limited task supervision is an effective recipe for evaluating the generalizability of model representation.
arXiv Detail & Related papers (2022-03-14T04:26:40Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.