論文の概要: Leveraging counterfactual concepts for debugging and improving CNN model performance
- arxiv url: http://arxiv.org/abs/2501.11087v1
- Date: Sun, 19 Jan 2025 15:50:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:25:09.825287
- Title: Leveraging counterfactual concepts for debugging and improving CNN model performance
- Title(参考訳): デバッグとCNNモデル性能改善のためのデファクト概念の活用
- Authors: Syed Ali Tariq, Tehseen Zia,
- Abstract要約: 本稿では,画像分類タスクにおけるCNNモデルの性能向上を目的とした,反現実的概念を活用することを提案する。
提案手法は, 意思決定プロセスにおいて重要なフィルタを特定するために, 対実的推論を利用する。
反事実的説明を取り入れることで、未知のモデル予測を検証し、誤分類を識別する。
- 参考スコア(独自算出の注目度): 1.1049608786515839
- License:
- Abstract: Counterfactual explanation methods have recently received significant attention for explaining CNN-based image classifiers due to their ability to provide easily understandable explanations that align more closely with human reasoning. However, limited attention has been given to utilizing explainability methods to improve model performance. In this paper, we propose to leverage counterfactual concepts aiming to enhance the performance of CNN models in image classification tasks. Our proposed approach utilizes counterfactual reasoning to identify crucial filters used in the decision-making process. Following this, we perform model retraining through the design of a novel methodology and loss functions that encourage the activation of class-relevant important filters and discourage the activation of irrelevant filters for each class. This process effectively minimizes the deviation of activation patterns of local predictions and the global activation patterns of their respective inferred classes. By incorporating counterfactual explanations, we validate unseen model predictions and identify misclassifications. The proposed methodology provides insights into potential weaknesses and biases in the model's learning process, enabling targeted improvements and enhanced performance. Experimental results on publicly available datasets have demonstrated an improvement of 1-2\%, validating the effectiveness of the approach.
- Abstract(参考訳): 近年,CNNに基づく画像分類器の説明において,人間の推論とより密接に一致した理解しやすい説明を提供する能力に注目が集まっている。
しかし、モデル性能を改善するための説明可能性法の利用には、限定的な注意が払われている。
本稿では,画像分類タスクにおけるCNNモデルの性能向上を目的とした,反現実的概念を活用することを提案する。
提案手法は, 意思決定プロセスにおいて重要なフィルタを特定するために, 対実的推論を利用する。
これに続いて、クラス関連重要なフィルタの活性化を促進し、クラス毎に無関係なフィルタの活性化を阻害する新しい手法と損失関数の設計を通じてモデル再訓練を行う。
このプロセスは、局所的な予測の活性化パターンの偏りと、それぞれの推論されたクラスのグローバルな活性化パターンの偏りを効果的に最小化する。
反事実的説明を取り入れることで、未知のモデル予測を検証し、誤分類を識別する。
提案手法は,モデル学習プロセスの潜在的な弱点とバイアスを洞察し,目標とする改善と性能向上を可能にする。
公開されているデータセットに対する実験結果は、1-2\%の改善を示し、アプローチの有効性を検証している。
関連論文リスト
- Using Part-based Representations for Explainable Deep Reinforcement Learning [30.566205347443113]
深層強化学習におけるアクターモデルに対する非負のトレーニング手法を提案する。
本稿では,よく知られたCartpoleベンチマークを用いて提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-08-21T09:21:59Z) - Exploring the Trade-off Between Model Performance and Explanation Plausibility of Text Classifiers Using Human Rationales [3.242050660144211]
ホック後説明可能性法は、ますます複雑なNLPモデルを理解するための重要なツールである。
本稿では,人間の判断を説明するテキストアノテーションをテキスト分類モデルに組み込む手法を提案する。
論文 参考訳(メタデータ) (2024-04-03T22:39:33Z) - Adversarial Attacks on the Interpretation of Neuron Activation
Maximization [70.5472799454224]
アクティベーション最大化アプローチは、訓練されたディープラーニングモデルの解釈と解析に使用される。
本研究では,解釈を欺くためにモデルを操作する敵の概念を考察する。
論文 参考訳(メタデータ) (2023-06-12T19:54:33Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Explain, Edit, and Understand: Rethinking User Study Design for
Evaluating Model Explanations [97.91630330328815]
我々はクラウドソーシング研究を行い、真偽のホテルレビューと偽のホテルレビューを区別するために訓練された詐欺検出モデルと対話する。
単語の線形バッグモデルでは、トレーニング中に特徴係数にアクセスした参加者は、非説明制御と比較して、テストフェーズにおいてモデルの信頼性が大幅に低下する可能性があることを観察する。
論文 参考訳(メタデータ) (2021-12-17T18:29:56Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
本稿では,ランダムな拡張がエンコーダにつながることを示すグラフコントラスト学習手法の新たな視点を提案する。
提案手法は,各ノードを決定論的ベクトルに埋め込む既存の手法とは対照的に,各ノードを潜在空間の分布で表現する。
いくつかのベンチマークデータセットにおける既存の最先端手法と比較して,性能が大幅に向上したことを示す。
論文 参考訳(メタデータ) (2021-12-15T01:45:32Z) - Beyond Trivial Counterfactual Explanations with Diverse Valuable
Explanations [64.85696493596821]
コンピュータビジョンの応用において、生成的対実法はモデルの入力を摂動させて予測を変更する方法を示す。
本稿では,多様性強化損失を用いて制約される不連続潜在空間における摂動を学習する反事実法を提案する。
このモデルは, 従来の最先端手法と比較して, 高品質な説明を生産する成功率を向上させる。
論文 参考訳(メタデータ) (2021-03-18T12:57:34Z) - ALEX: Active Learning based Enhancement of a Model's Explainability [34.26945469627691]
アクティブラーニング(AL)アルゴリズムは、最小限のラベル付き例をブートストラップ方式で効率的な分類器を構築しようとする。
データ駆動学習の時代において、これは追求すべき重要な研究方向である。
本稿では,モデルの有効性に加えて,ブートストラップ段階におけるモデルの解釈可能性の向上も目指すAL選択関数の開発に向けた取り組みについて述べる。
論文 参考訳(メタデータ) (2020-09-02T07:15:39Z) - Valid Explanations for Learning to Rank Models [5.320400771224103]
本稿では,入力特徴の少数のサブセットをランキング決定の理由として同定するモデルに依存しない局所的説明法を提案する。
我々は,選択された特徴の有無に基づいて,ランク付けに特化して説明の妥当性と完全性という新たな概念を導入する。
論文 参考訳(メタデータ) (2020-04-29T06:21:56Z) - Latent Opinions Transfer Network for Target-Oriented Opinion Words
Extraction [63.70885228396077]
資源豊富なレビュー評価分類データセットから低リソースタスクTOWEへ意見知識を伝達する新しいモデルを提案する。
我々のモデルは、他の最先端手法よりも優れた性能を達成し、意見の知識を伝達することなく、ベースモデルを大幅に上回る。
論文 参考訳(メタデータ) (2020-01-07T11:50:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。