Physics-Informed Machine Learning for Efficient Reconfigurable Intelligent Surface Design
- URL: http://arxiv.org/abs/2501.11323v1
- Date: Mon, 20 Jan 2025 08:02:15 GMT
- Title: Physics-Informed Machine Learning for Efficient Reconfigurable Intelligent Surface Design
- Authors: Zhen Zhang, Jun Hui Qiu, Jun Wei Zhang, Hui Dong Li, Dong Tang, Qiang Cheng, Wei Lin,
- Abstract summary: We propose a machine-learning-assisted approach for efficient RIS design.
An accurate and fast model to predict the reflection coefficient of RIS element is developed.
A RIS has been practically designed based on the proposed method.
- Score: 16.751602833086544
- License:
- Abstract: Reconfigurable intelligent surface (RIS) is a two-dimensional periodic structure integrated with a large number of reflective elements, which can manipulate electromagnetic waves in a digital way, offering great potentials for wireless communication and radar detection applications. However, conventional RIS designs highly rely on extensive full-wave EM simulations that are extremely time-consuming. To address this challenge, we propose a machine-learning-assisted approach for efficient RIS design. An accurate and fast model to predict the reflection coefficient of RIS element is developed by combining a multi-layer perceptron neural network (MLP) and a dual-port network, which can significantly reduce tedious EM simulations in the network training. A RIS has been practically designed based on the proposed method. To verify the proposed method, the RIS has also been fabricated and measured. The experimental results are in good agreement with the simulation results, which validates the efficacy of the proposed method in RIS design.
Related papers
- Machine Learning for Metasurfaces Design and Their Applications [20.350142630673197]
Machine/deep learning (ML/DL) techniques are proving critical in reducing the computational cost and time of RIS inverse design.
This chapter provides a synopsis of DL techniques for both inverse RIS design and RIS-assisted wireless systems.
arXiv Detail & Related papers (2022-11-02T17:19:37Z) - Pervasive Machine Learning for Smart Radio Environments Enabled by
Reconfigurable Intelligent Surfaces [56.35676570414731]
The emerging technology of Reconfigurable Intelligent Surfaces (RISs) is provisioned as an enabler of smart wireless environments.
RISs offer a highly scalable, low-cost, hardware-efficient, and almost energy-neutral solution for dynamic control of the propagation of electromagnetic signals over the wireless medium.
One of the major challenges with the envisioned dense deployment of RISs in such reconfigurable radio environments is the efficient configuration of multiple metasurfaces.
arXiv Detail & Related papers (2022-05-08T06:21:33Z) - Phase Shift Design in RIS Empowered Wireless Networks: From Optimization
to AI-Based Methods [83.98961686408171]
Reconfigurable intelligent surfaces (RISs) have a revolutionary capability to customize the radio propagation environment for wireless networks.
To fully exploit the advantages of RISs in wireless systems, the phases of the reflecting elements must be jointly designed with conventional communication resources.
This paper provides a review of current optimization methods and artificial intelligence-based methods for handling the constraints imposed by RIS.
arXiv Detail & Related papers (2022-04-28T09:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - Robust Reconfigurable Intelligent Surfaces via Invariant Risk and Causal
Representations [55.50218493466906]
In this paper, the problem of robust reconfigurable intelligent surface (RIS) system design under changes in data distributions is investigated.
Using the notion of invariant risk minimization (IRM), an invariant causal representation across multiple environments is used such that the predictor is simultaneously optimal for each environment.
A neural network-based solution is adopted to seek the predictor and its performance is validated via simulations against an empirical risk minimization-based design.
arXiv Detail & Related papers (2021-05-04T21:36:31Z) - Channel Estimation and Hybrid Architectures for RIS-Assisted
Communications [6.677785070549226]
Reconfigurable intelligent surfaces (RISs) are considered as potential technologies for the upcoming sixth-generation (6G) wireless communication system.
Benefits brought by deploying one or multiple RISs include increased spectrum and energy efficiency, enhanced connectivity, extended communication coverage, reduced complexity at transceivers.
arXiv Detail & Related papers (2021-04-14T20:28:09Z) - Phase Configuration Learning in Wireless Networks with Multiple
Reconfigurable Intelligent Surfaces [50.622375361505824]
Reconfigurable Intelligent Surfaces (RISs) are highly scalable technology capable of offering dynamic control of electro-magnetic wave propagation.
One of the major challenges with RIS-empowered wireless communications is the low-overhead dynamic configuration of multiple RISs.
We devise low-complexity supervised learning approaches for the RISs' phase configurations.
arXiv Detail & Related papers (2020-10-09T05:35:27Z) - Truly Intelligent Reflecting Surface-Aided Secure Communication Using
Deep Learning [32.34501171201543]
This paper considers machine learning for physical layer security design for communication in a challenging wireless environment.
A deep learning (DL) technique has been developed to tune the reflections of the IRS elements in real-time.
arXiv Detail & Related papers (2020-04-07T00:48:58Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
The reconfigurable intelligent surface (RIS) has been speculated as one of the key enabling technologies for the future six generation (6G) wireless communication systems.
In this paper, we investigate the joint design of transmit beamforming matrix at the base station and the phase shift matrix at the RIS, by leveraging recent advances in deep reinforcement learning (DRL)
The proposed algorithm is not only able to learn from the environment and gradually improve its behavior, but also obtains the comparable performance compared with two state-of-the-art benchmarks.
arXiv Detail & Related papers (2020-02-24T04:28:44Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.