論文の概要: Automatic Labelling & Semantic Segmentation with 4D Radar Tensors
- arxiv url: http://arxiv.org/abs/2501.11351v1
- Date: Mon, 20 Jan 2025 09:18:41 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:20:55.812808
- Title: Automatic Labelling & Semantic Segmentation with 4D Radar Tensors
- Title(参考訳): 4次元レーダテンソルを用いた自動ラベリング・セマンティックセグメンテーション
- Authors: Botao Sun, Ignacio Roldan, Francesco Fioranelli,
- Abstract要約: 本稿では,LiDARとカメラの補完情報を活用した自動ラベリング手法を提案する。
生成されたラベルは、提案したセマンティックセグメンテーションネットワークへの入力として、対応する4Dレーダデータとともに、基底真理として使用される。
- 参考スコア(独自算出の注目度): 1.0633223916032546
- License:
- Abstract: In this paper, an automatic labelling process is presented for automotive datasets, leveraging on complementary information from LiDAR and camera. The generated labels are then used as ground truth with the corresponding 4D radar data as inputs to a proposed semantic segmentation network, to associate a class label to each spatial voxel. Promising results are shown by applying both approaches to the publicly shared RaDelft dataset, with the proposed network achieving over 65% of the LiDAR detection performance, improving 13.2% in vehicle detection probability, and reducing 0.54 m in terms of Chamfer distance, compared to variants inspired from the literature.
- Abstract(参考訳): 本稿では,LiDARとカメラの補完情報を活用した自動ラベリング手法を提案する。
生成されたラベルは、提案されたセマンティックセグメンテーションネットワークへの入力として、対応する4Dレーダデータと接地真実として使用され、各空間ボクセルにクラスラベルを関連付ける。
提案したネットワークは、LiDAR検出性能の65%以上を達成し、車両検出確率を13.2%改善し、文献から着想を得た変種と比較して、チャンファー距離の0.54mを削減した。
関連論文リスト
- Interaction Dataset of Autonomous Vehicles with Traffic Lights and Signs [11.127555705122283]
本稿では,自動走行車(AV)と交通制御装置,特に信号機と停止標識の相互作用を総合的に把握するデータセットの開発について述べる。
我々の研究は、AVがこれらの交通制御装置をどのようにナビゲートするかの実際の軌跡データを提供することによって、既存の文献における重要なギャップに対処する。
本研究では,交通信号を用いた37,000以上のインスタンスと,停止標識を用いた44,000のインスタンスを組み込んで,関連する対話軌跡データをMotionデータセットから同定し抽出する手法を提案する。
論文 参考訳(メタデータ) (2025-01-21T22:59:50Z) - Efficient 4D Radar Data Auto-labeling Method using LiDAR-based Object Detection Network [5.405156980077946]
既存の4Dレーダーデータセットには十分なセンサーデータとラベルがない。
これらの問題に対処するために,K-Radarデータセットにおける4次元レーダテンソル(4DRT)の自動ラベリング手法を提案する。
論文 参考訳(メタデータ) (2024-05-13T04:28:06Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - Contrastive Learning for Automotive mmWave Radar Detection Points Based
Instance Segmentation [9.491866334097114]
本稿では,レーダ検出点に基づくインスタンスセグメント化を実現するための対照的な学習手法を提案する。
提案手法では, 正・負のサンプルを接地トラストラベルに従って定義し, 対照的な損失を適用してまずモデルのトレーニングを行い, 次に掲げる下流タスクのトレーニングを行う。
実験の結果, 地中真実情報が5%のトレーニングデータでのみ利用可能である場合, 提案手法は, 教師付き手法と同等の性能を示し, 100%の地中真実情報が得られる。
論文 参考訳(メタデータ) (2022-03-13T03:00:34Z) - Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D
Object Detection [85.11649974840758]
3Dオブジェクト検出ネットワークは、トレーニングされたデータに対してバイアスを受ける傾向がある。
そこで本研究では,ライダーを用いた3次元物体検出器のソースレス・教師なし領域適応のための単一フレーム手法を提案する。
論文 参考訳(メタデータ) (2021-11-30T18:42:42Z) - RadarScenes: A Real-World Radar Point Cloud Data Set for Automotive
Applications [0.17992352397675154]
このデータセットの目的は、新しい(機械学習に基づく)レーダー認識アルゴリズムの開発を可能にすることである。
追加情報とダウンロード手順は、データセットのWebサイト(www.radar-scenes.com)で見ることができる。
論文 参考訳(メタデータ) (2021-04-06T13:22:23Z) - Manual-Label Free 3D Detection via An Open-Source Simulator [50.74299948748722]
我々は、CARLAシミュレータを利用して、大量の自己ラベル付きトレーニングサンプルを生成する手動ラベルフリーな3D検出アルゴリズムを提案する。
ドメイン適応型VoxelNet(DA-VoxelNet)は、合成データから実際のシナリオへの分散ギャップを横断することができる。
実験の結果、提案されたDA 3D検出器は、KITTI評価セット上で76.66%と56.64%のmAPを達成することができた。
論文 参考訳(メタデータ) (2020-11-16T08:29:01Z) - Scribble-based Weakly Supervised Deep Learning for Road Surface
Extraction from Remote Sensing Images [7.1577508803778045]
そこで我々は,ScRoadExtractor という,スクリブルに基づく弱制御路面抽出手法を提案する。
スパーススクリブルからラベルなし画素への意味情報を伝達するために,道路ラベルの伝搬アルゴリズムを導入する。
道路ラベル伝搬アルゴリズムから生成された提案マスクを用いて、デュアルブランチエンコーダデコーダネットワークを訓練する。
論文 参考訳(メタデータ) (2020-10-25T12:40:30Z) - Complete & Label: A Domain Adaptation Approach to Semantic Segmentation
of LiDAR Point Clouds [49.47017280475232]
3次元点雲のセマンティックラベリングにおける教師なし領域適応問題について検討する。
セグメンテーションネットワークに渡す前に、基盤となる表面を復元するためにComplete と Label のアプローチを採用する。
回収された3D表面は標準領域として機能し、そこからセマンティックラベルが異なるLiDARセンサー間で転送される。
論文 参考訳(メタデータ) (2020-07-16T17:42:05Z) - UC-Net: Uncertainty Inspired RGB-D Saliency Detection via Conditional
Variational Autoencoders [81.5490760424213]
データラベリングプロセスから学習することで、RGB-Dサリエンシ検出に不確実性を利用するための第1のフレームワーク(UCNet)を提案する。
そこで本研究では,サリエンシデータラベリングにヒントを得て,確率的RGB-Dサリエンシ検出ネットワークを提案する。
論文 参考訳(メタデータ) (2020-04-13T04:12:59Z) - Characterization of Multiple 3D LiDARs for Localization and Mapping
using Normal Distributions Transform [54.46473014276162]
マッピングや車両のローカライゼーションのタスクにおいて,多種多様なメーカー,モデル,レーザー構成を含む10種類の3次元LiDARセンサの詳細な比較を行った。
この研究で使用されるデータは、我々のLiDAR Benchmarking and Reference(LIBRE)データセットのサブセットであり、各センサーから独立して、各日の異なる時間に、公道で何度も運転される車両から取得される。
我々は,(1)平均地図エントロピーに基づく評価マップの品質を含む3次元地図作成作業における各LiDARの性能と特性を解析し,(2)地上の真理参照マップを用いて6-DOFのローカライゼーションを行う。
論文 参考訳(メタデータ) (2020-04-03T05:05:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。