論文の概要: MASS: Overcoming Language Bias in Image-Text Matching
- arxiv url: http://arxiv.org/abs/2501.11469v1
- Date: Mon, 20 Jan 2025 12:56:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:25.525902
- Title: MASS: Overcoming Language Bias in Image-Text Matching
- Title(参考訳): MASS:イメージテキストマッチングにおける言語バイアスの克服
- Authors: Jiwan Chung, Seungwon Lim, Sangkyu Lee, Youngjae Yu,
- Abstract要約: マルチモーダルASsociation Score (MASS) は、画像テキストマッチング問題において、より正確な視覚的精度を実現するために、言語への依存を減らすためのフレームワークである。
実験の結果,MASSは言語構成性の理解を失うことなく,言語バイアスを効果的に軽減できることがわかった。
- 参考スコア(独自算出の注目度): 15.922356794782965
- License:
- Abstract: Pretrained visual-language models have made significant advancements in multimodal tasks, including image-text retrieval. However, a major challenge in image-text matching lies in language bias, where models predominantly rely on language priors and neglect to adequately consider the visual content. We thus present Multimodal ASsociation Score (MASS), a framework that reduces the reliance on language priors for better visual accuracy in image-text matching problems. It can be seamlessly incorporated into existing visual-language models without necessitating additional training. Our experiments have shown that MASS effectively lessens language bias without losing an understanding of linguistic compositionality. Overall, MASS offers a promising solution for enhancing image-text matching performance in visual-language models.
- Abstract(参考訳): 事前訓練された視覚言語モデルでは、画像テキスト検索を含むマルチモーダルタスクが大幅に進歩している。
しかし、画像テキストマッチングにおける大きな課題は言語バイアスにある。
そこで本稿では,画像テキストマッチング問題における視覚的精度向上のために,先行言語への依存を減らすためのフレームワークであるMultimodal ASsociation Score(MASS)を提案する。
追加のトレーニングを必要とせずに、既存のビジュアル言語モデルにシームレスに組み込むことができる。
実験の結果,MASSは言語構成性の理解を失うことなく,言語バイアスを効果的に軽減できることがわかった。
全体として、MASSは視覚言語モデルにおける画像テキストマッチング性能を向上させるための有望なソリューションを提供する。
関連論文リスト
- Learning the Visualness of Text Using Large Vision-Language Models [42.75864384249245]
視覚的テキストは人の心の中のイメージを誘発するが、視覚的でないテキストはそれを起こさない。
テキスト内の視覚を自動的に検出する手法により、テキスト・ツー・イメージ検索と生成モデルにより、関連する画像でテキストを拡張できる。
我々は,3,620の英語文のデータセットと,複数のアノテータによって提供されるその視覚性スコアをキュレートする。
論文 参考訳(メタデータ) (2023-05-11T17:45:16Z) - Multi-Modal Representation Learning with Text-Driven Soft Masks [48.19806080407593]
自己教師型学習フレームワークにおける視覚言語表現学習手法を提案する。
画像中の領域をソフトメイキングすることで、画像テキストマッチング(ITM)タスクの多様な特徴を生成する。
マルチモーダルエンコーダを用いて単語条件の視覚的注意を計算し,各単語に関連する領域を同定する。
論文 参考訳(メタデータ) (2023-04-03T05:07:49Z) - On Advances in Text Generation from Images Beyond Captioning: A Case
Study in Self-Rationalization [89.94078728495423]
近年のモダリティ,CLIP画像表現,言語モデルの拡張は,マルチモーダル入力によるタスクのマルチモーダル自己調整を一貫して改善していないことを示す。
画像キャプションを超えて画像やテキストからテキストを生成するために構築可能なバックボーンモデリング手法が提案されている。
論文 参考訳(メタデータ) (2022-05-24T00:52:40Z) - Visually-Augmented Language Modeling [137.36789885105642]
本稿では,言語モデリングのための関連画像を含むテキストトークンを視覚的に拡張する,VaLMという新しい事前学習フレームワークを提案する。
視覚的に拡張されたコンテキストでは、VaLMは視覚知識融合層を使用してマルチモーダル基底言語モデリングを可能にする。
視覚情報を必要とする多モーダル・コモンセンス推論タスクについて,提案モデルの評価を行った。
論文 参考訳(メタデータ) (2022-05-20T13:41:12Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
本稿では,視覚情報と言語情報を結合として見る視覚言語モデリングネットワーク(VisionLAN)を提案する。
VisionLANは39%のスピード向上を実現し、正確な認識のための視覚的特徴を高めるために言語情報を適応的に検討する。
論文 参考訳(メタデータ) (2021-08-22T07:56:24Z) - UC2: Universal Cross-lingual Cross-modal Vision-and-Language
Pre-training [52.852163987208826]
UC2は、言語間クロスモーダル表現学習のための最初の機械翻訳拡張フレームワークである。
Masked Region-token Modeling (MRTM) と Visual Translation Language Modeling (VTLM) の2つの新しいプリトレーニングタスクを提案する。
提案手法は,英語タスクにおける単言語学習モデルと同等の性能を維持しつつ,多種多様な非英語ベンチマークで新たな最先端を実現する。
論文 参考訳(メタデータ) (2021-04-01T08:30:53Z) - Vokenization: Improving Language Understanding with Contextualized,
Visual-Grounded Supervision [110.66085917826648]
我々は,言語トークンを関連画像に文脈的にマッピングすることで,言語のみのデータに対するマルチモーダルアライメントを補間する手法を開発した。
語彙化」は比較的小さな画像キャプションデータセットに基づいて訓練され、それを大規模言語コーパスのための語彙生成に適用する。
これらの文脈的に生成された語彙を用いて学習し、視覚的に制御された言語モデルにより、複数の純粋言語タスクにおいて、自己教師による代替よりも一貫した改善が示される。
論文 参考訳(メタデータ) (2020-10-14T02:11:51Z) - Probing Contextual Language Models for Common Ground with Visual
Representations [76.05769268286038]
我々は、マッチングと非マッチングの視覚表現を区別する上で、テキストのみの表現がいかに効果的かを評価するための探索モデルを設計する。
以上の結果から,言語表現だけでは,適切な対象カテゴリから画像パッチを検索する強力な信号が得られることがわかった。
視覚的に接地された言語モデルは、例えば検索においてテキストのみの言語モデルよりわずかに優れているが、人間よりもはるかに低い。
論文 参考訳(メタデータ) (2020-05-01T21:28:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。