Generative AI and Large Language Models in Language Preservation: Opportunities and Challenges
- URL: http://arxiv.org/abs/2501.11496v1
- Date: Mon, 20 Jan 2025 14:03:40 GMT
- Title: Generative AI and Large Language Models in Language Preservation: Opportunities and Challenges
- Authors: Vincent Koc,
- Abstract summary: Generative AI and large-scale language models (LLM) have emerged as powerful tools in language preservation.
This paper examines the role of generative AIs and LLMs in preserving endangered languages, highlighting the risks and challenges associated with their use.
- Score: 0.0
- License:
- Abstract: Generative AI and large-scale language models (LLM) have emerged as powerful tools in language preservation, particularly for near-native and endangered languages. With the increasing reliance on technology for communication, education, and cultural documentation, new opportunities have emerged to mitigate the dramatic decline of linguistic diversity worldwide. This paper examines the role of generative AIs and LLMs in preserving endangered languages, highlighting the risks and challenges associated with their use. We analyze the underlying technologies driving these models, including natural language processing (NLP) and deep learning, and explore several cases where these technologies have been applied to low-resource languages. Additionally, we discuss ethical considerations, data scarcity issues, and technical challenges while proposing solutions to enhance AI-driven language preservation.
Related papers
- IOLBENCH: Benchmarking LLMs on Linguistic Reasoning [8.20398036986024]
We introduce IOLBENCH, a novel benchmark derived from International Linguistics Olympiad (IOL) problems.
This dataset encompasses diverse problems testing syntax, morphology, phonology, and semantics.
We find that even the most advanced models struggle to handle the intricacies of linguistic complexity.
arXiv Detail & Related papers (2025-01-08T03:15:10Z) - Opportunities and Challenges of Large Language Models for Low-Resource Languages in Humanities Research [23.773194690783512]
Low-resource languages serve as invaluable repositories of human history, embodying cultural evolution and intellectual diversity.
Despite their significance, these languages face critical challenges, including data scarcity and technological limitations.
Recent advancements in large language models (LLMs) offer transformative opportunities for addressing these challenges.
arXiv Detail & Related papers (2024-11-30T00:10:56Z) - LIMBA: An Open-Source Framework for the Preservation and Valorization of Low-Resource Languages using Generative Models [62.47865866398233]
This white paper proposes a framework to generate linguistic tools for low-resource languages.
By addressing the data scarcity that hinders intelligent applications for such languages, we contribute to promoting linguistic diversity.
arXiv Detail & Related papers (2024-11-20T16:59:41Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Harnessing the Power of Artificial Intelligence to Vitalize Endangered Indigenous Languages: Technologies and Experiences [31.62071644137294]
We discuss the decreasing diversity of languages in the world and how working with Indigenous languages poses unique ethical challenges for AI and NLP.
We report encouraging results in the development of high-quality machine learning translators for Indigenous languages.
We present prototypes we have built in projects done in 2023 and 2024 with Indigenous communities in Brazil, aimed at facilitating writing.
arXiv Detail & Related papers (2024-07-17T14:46:37Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - From Bytes to Borsch: Fine-Tuning Gemma and Mistral for the Ukrainian Language Representation [0.0]
generative large language models (LLMs) stand at the forefront of innovation, showcasing unparalleled abilities in text understanding and generation.
However, the limited representation of low-resource languages like Ukrainian poses a notable challenge, restricting the reach and relevance of this technology.
Our paper addresses this by fine-tuning the open-source Gemma and Mistral LLMs with Ukrainian datasets, aiming to improve their linguistic proficiency.
arXiv Detail & Related papers (2024-04-14T04:25:41Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
Large Language Models (LLMs) generate false, erroneous, or misleading content.
LLMs can be exploited for malicious applications.
This poses a significant challenge to society in terms of the potential deception of users.
arXiv Detail & Related papers (2023-10-08T14:55:02Z) - A Survey of Large Language Models [81.06947636926638]
Language modeling has been widely studied for language understanding and generation in the past two decades.
Recently, pre-trained language models (PLMs) have been proposed by pre-training Transformer models over large-scale corpora.
To discriminate the difference in parameter scale, the research community has coined the term large language models (LLM) for the PLMs of significant size.
arXiv Detail & Related papers (2023-03-31T17:28:46Z) - Systematic Inequalities in Language Technology Performance across the
World's Languages [94.65681336393425]
We introduce a framework for estimating the global utility of language technologies.
Our analyses involve the field at large, but also more in-depth studies on both user-facing technologies and more linguistic NLP tasks.
arXiv Detail & Related papers (2021-10-13T14:03:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.