Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features
- URL: http://arxiv.org/abs/2501.11526v1
- Date: Mon, 20 Jan 2025 15:08:19 GMT
- Title: Meta-Instance Selection. Instance Selection as a Classification Problem with Meta-Features
- Authors: Marcin Blachnik, Piotr CiepliĆski,
- Abstract summary: The study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space.
The proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity.
- Score: 0.0
- License:
- Abstract: Data pruning, or instance selection, is an important problem in machine learning especially in terms of nearest neighbour classifier. However, in data pruning which speeds up the prediction phase, there is an issue related to the speed and efficiency of the process itself. In response, the study proposes an approach involving transforming the instance selection process into a classification task conducted in a unified meta-feature space where each instance can be classified and assigned to either the "to keep" or "to remove" class. This approach requires training an appropriate meta-classifier, which can be developed based on historical instance selection results from other datasets using reference instance selection methods as a labeling tool. This work proposes constructing the meta-feature space based on properties extracted from the nearest neighbor graph. Experiments conducted on 17 datasets of varying sizes and five reference instance selection methods (ENN, Drop3, ICF, HMN-EI, and CCIS) demonstrate that the proposed solution achieves results comparable to reference instance selection methods while significantly reducing computational complexity. In the proposed approach, the computational complexity of the system depends only on identifying the k-nearest neighbors for each data sample and running the meta-classifier. Additionally, the study discusses the choice of meta-classifier, recommending the use of Balanced Random Forest.
Related papers
- Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model [0.20718016474717196]
We conduct a benchmark study using 17 different classifiers and three types of trajectory on a classification task using the BBOB benchmark suite.
We find that the choice of classifier has a significant impact, showing that feature-based and interval-based models are the best choices.
arXiv Detail & Related papers (2025-01-20T11:28:45Z) - FastGAS: Fast Graph-based Annotation Selection for In-Context Learning [53.17606395275021]
In-context learning (ICL) empowers large language models (LLMs) to tackle new tasks by using a series of training instances as prompts.
Existing methods have proposed to select a subset of unlabeled examples for annotation.
We propose a graph-based selection method, FastGAS, designed to efficiently identify high-quality instances.
arXiv Detail & Related papers (2024-06-06T04:05:54Z) - Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
We propose a $k$-nearest-neighbor (KNN)-based method for retrieval augmented classifications.
We find that shared representation for classification and retrieval hurts performance and leads to training instability.
We evaluate our method on a wide range of classification datasets.
arXiv Detail & Related papers (2023-03-23T06:33:06Z) - Intra-class Adaptive Augmentation with Neighbor Correction for Deep
Metric Learning [99.14132861655223]
We propose a novel intra-class adaptive augmentation (IAA) framework for deep metric learning.
We reasonably estimate intra-class variations for every class and generate adaptive synthetic samples to support hard samples mining.
Our method significantly improves and outperforms the state-of-the-art methods on retrieval performances by 3%-6%.
arXiv Detail & Related papers (2022-11-29T14:52:38Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
We propose a fully-convolutional 3D point cloud instance segmentation method that works in a per-point prediction fashion.
We find the key to its success is assigning a suitable target to each sampled point.
Our approach achieves promising results on both ScanNet and S3DIS benchmarks.
arXiv Detail & Related papers (2022-04-25T02:41:46Z) - Parallel feature selection based on the trace ratio criterion [4.30274561163157]
This work presents a novel parallel feature selection approach for classification, namely Parallel Feature Selection using Trace criterion (PFST)
Our method uses trace criterion, a measure of class separability used in Fisher's Discriminant Analysis, to evaluate feature usefulness.
The experiments show that our method can produce a small set of features in a fraction of the amount of time by the other methods under comparison.
arXiv Detail & Related papers (2022-03-03T10:50:33Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Dynamic Instance-Wise Classification in Correlated Feature Spaces [15.351282873821935]
In a typical machine learning setting, the predictions on all test instances are based on a common subset of features discovered during model training.
A new method is proposed that sequentially selects the best feature to evaluate for each test instance individually, and stops the selection process to make a prediction once it determines that no further improvement can be achieved with respect to classification accuracy.
The effectiveness, generalizability, and scalability of the proposed method is illustrated on a variety of real-world datasets from diverse application domains.
arXiv Detail & Related papers (2021-06-08T20:20:36Z) - Probabilistic Value Selection for Space Efficient Model [10.109875612945658]
Two probabilistic methods based on information theory's metric are proposed: PVS and P + VS.
Experiment results show that value selection can achieve the balance between accuracy and model size reduction.
arXiv Detail & Related papers (2020-07-09T08:45:13Z) - Optimal Clustering from Noisy Binary Feedback [75.17453757892152]
We study the problem of clustering a set of items from binary user feedback.
We devise an algorithm with a minimal cluster recovery error rate.
For adaptive selection, we develop an algorithm inspired by the derivation of the information-theoretical error lower bounds.
arXiv Detail & Related papers (2019-10-14T09:18:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.