論文の概要: Graph Defense Diffusion Model
- arxiv url: http://arxiv.org/abs/2501.11568v1
- Date: Mon, 20 Jan 2025 16:18:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:21:27.644503
- Title: Graph Defense Diffusion Model
- Title(参考訳): グラフ防衛拡散モデル
- Authors: Xin He, Wenqi Fan, Yili Wang, Chengyi Liu, Rui Miao, Xin Juan, Xin Wang,
- Abstract要約: グラフニューラルネットワーク(GNN)は、敵攻撃に対して非常に脆弱であり、パフォーマンスを著しく低下させる可能性がある。
既存のグラフ浄化法は、攻撃されたグラフをフィルタリングすることでこの問題に対処しようとする。
グラフに対する敵攻撃を防御するための,より汎用的なアプローチを提案する。
- 参考スコア(独自算出の注目度): 26.41730982598055
- License:
- Abstract: Graph Neural Networks (GNNs) demonstrate significant potential in various applications but remain highly vulnerable to adversarial attacks, which can greatly degrade their performance. Existing graph purification methods attempt to address this issue by filtering attacked graphs; however, they struggle to effectively defend against multiple types of adversarial attacks simultaneously due to their limited flexibility, and they lack comprehensive modeling of graph data due to their heavy reliance on heuristic prior knowledge. To overcome these challenges, we propose a more versatile approach for defending against adversarial attacks on graphs. In this work, we introduce the Graph Defense Diffusion Model (GDDM), a flexible purification method that leverages the denoising and modeling capabilities of diffusion models. The iterative nature of diffusion models aligns well with the stepwise process of adversarial attacks, making them particularly suitable for defense. By iteratively adding and removing noise, GDDM effectively purifies attacked graphs, restoring their original structure and features. Our GDDM consists of two key components: (1) Graph Structure-Driven Refiner, which preserves the basic fidelity of the graph during the denoising process, and ensures that the generated graph remains consistent with the original scope; and (2) Node Feature-Constrained Regularizer, which removes residual impurities from the denoised graph, further enhances the purification effect. Additionally, we design tailored denoising strategies to handle different types of adversarial attacks, improving the model's adaptability to various attack scenarios. Extensive experiments conducted on three real-world datasets demonstrate that GDDM outperforms state-of-the-art methods in defending against a wide range of adversarial attacks, showcasing its robustness and effectiveness.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、様々なアプリケーションにおいて大きな可能性を秘めているが、敵攻撃に対して非常に脆弱であり、パフォーマンスを著しく低下させる可能性がある。
既存のグラフ浄化法では、攻撃されたグラフをフィルタリングすることでこの問題に対処しようとするが、その柔軟性が限られているため、複数の種類の敵攻撃を効果的に防御することができず、ヒューリスティックな事前知識に大きく依存しているため、グラフデータの包括的モデリングが欠如している。
これらの課題を克服するために,グラフに対する敵対的攻撃を防御するための,より汎用的なアプローチを提案する。
本稿では,拡散モデルの復調とモデリング機能を活用したフレキシブルな浄化法であるグラフディフェンス拡散モデル(GDDM)を紹介する。
拡散モデルの反復的な性質は、敵攻撃の段階的なプロセスとよく一致し、特に防御に適している。
繰り返しノイズの追加と削除によって、GDDMは攻撃されたグラフを効果的に浄化し、元の構造と特徴を復元する。
筆者らのGDDMは,(1)デノナイズ処理中のグラフの基本的な忠実さを保ち,生成したグラフが元のスコープと整合性を保つグラフ構造駆動精錬器,(2)デノナイズドグラフから残留不純物を取り除いたノード特徴制約正規化器からなる。
さらに、異なる種類の敵攻撃を扱うための固有化戦略を設計し、様々な攻撃シナリオに対するモデルの適応性を向上させる。
3つの実世界のデータセットで実施された大規模な実験により、GDDMは幅広い敵攻撃に対する防御において最先端の手法よりも優れており、その堅牢性と有効性を示している。
関連論文リスト
- Talos: A More Effective and Efficient Adversarial Defense for GNN Models Based on the Global Homophily of Graphs [2.4866716181615467]
グラフニューラルネットワーク(GNN)モデルは、敵攻撃の影響を受けやすい。
そこで我々は,グラフの局所的ホモフィリーを防御としてではなく,グローバル性を高める,Talosという新しい防衛手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T08:08:01Z) - HGAttack: Transferable Heterogeneous Graph Adversarial Attack [63.35560741500611]
ヘテロジニアスグラフニューラルネットワーク(HGNN)は、Webやeコマースなどの分野でのパフォーマンスでますます認識されている。
本稿ではヘテロジニアスグラフに対する最初の専用グレーボックス回避手法であるHGAttackを紹介する。
論文 参考訳(メタデータ) (2024-01-18T12:47:13Z) - HC-Ref: Hierarchical Constrained Refinement for Robust Adversarial
Training of GNNs [7.635985143883581]
コンピュータビジョンにおける敵の攻撃に対する最も効果的な防御機構の1つとされる敵の訓練は、GNNの堅牢性を高めるという大きな約束を持っている。
本稿では,GNNと下流分類器の対摂動性を高める階層的制約改善フレームワーク(HC-Ref)を提案する。
論文 参考訳(メタデータ) (2023-12-08T07:32:56Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
グラフニューラルネットワーク(GNN)は敵の攻撃に弱いことが示されている。
本稿では,DGA(Dariable Graph Attack)と呼ばれる新しい攻撃手法を提案し,効果的な攻撃を効率的に生成する。
最先端と比較して、DGAは6倍のトレーニング時間と11倍のGPUメモリフットプリントでほぼ同等の攻撃性能を達成する。
論文 参考訳(メタデータ) (2023-08-29T20:14:42Z) - IDEA: Invariant Defense for Graph Adversarial Robustness [60.0126873387533]
敵攻撃に対する不変因果判定法(IDEA)を提案する。
我々は,情報理論の観点から,ノードと構造に基づく分散目標を導出する。
実験によると、IDEAは5つのデータセットすべてに対する5つの攻撃に対して、最先端の防御性能を達成している。
論文 参考訳(メタデータ) (2023-05-25T07:16:00Z) - Single Node Injection Label Specificity Attack on Graph Neural Networks
via Reinforcement Learning [8.666702832094874]
ブラックボックス回避設定においてターゲットノードを操作するために、単一の悪意あるノードを注入する勾配のない一般化可能な逆問題を提案する。
被害者モデルを直接クエリすることで、G$2$-SNIAは探索からパターンを学び、極めて限られた攻撃予算で多様な攻撃目標を達成する。
論文 参考訳(メタデータ) (2023-05-04T15:10:41Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Reinforcement Learning-based Black-Box Evasion Attacks to Link
Prediction in Dynamic Graphs [87.5882042724041]
動的グラフ(LPDG)におけるリンク予測は、多様な応用を持つ重要な研究課題である。
我々は,LPDG法の脆弱性を調査し,最初の実用的なブラックボックス回避攻撃を提案する。
論文 参考訳(メタデータ) (2020-09-01T01:04:49Z) - Graph Backdoor [53.70971502299977]
GTAはグラフニューラルネットワーク(GNN)に対する最初のバックドア攻撃である。
GTAは、トポロジカル構造と記述的特徴の両方を含む特定の部分グラフとしてトリガーを定義する。
トランスダクティブ(ノード分類など)とインダクティブ(グラフ分類など)の両方のタスクに対してインスタンス化することができる。
論文 参考訳(メタデータ) (2020-06-21T19:45:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。