論文の概要: Fairness Testing through Extreme Value Theory
- arxiv url: http://arxiv.org/abs/2501.11597v1
- Date: Mon, 20 Jan 2025 16:56:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:26:53.168502
- Title: Fairness Testing through Extreme Value Theory
- Title(参考訳): 極値理論によるフェアネステスト
- Authors: Verya Monjezi, Ashutosh Trivedi, Vladik Kreinovich, Saeid Tizpaz-Niari,
- Abstract要約: 極端対実的差別(ECD)という新たな公正基準を提案する。
ECDは、保護されたグループの会員のみに基づいて、個人にとって最悪の結果のデメリットを見積もっている。
本稿では,ML結果分布の尾部から統計的に重要な点集合を抽出するランダム化アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 7.980954450762595
- License:
- Abstract: Data-driven software is increasingly being used as a critical component of automated decision-support systems. Since this class of software learns its logic from historical data, it can encode or amplify discriminatory practices. Previous research on algorithmic fairness has focused on improving average-case fairness. On the other hand, fairness at the extreme ends of the spectrum, which often signifies lasting and impactful shifts in societal attitudes, has received significantly less emphasis. Leveraging the statistics of extreme value theory (EVT), we propose a novel fairness criterion called extreme counterfactual discrimination (ECD). This criterion estimates the worst-case amounts of disadvantage in outcomes for individuals solely based on their memberships in a protected group. Utilizing tools from search-based software engineering and generative AI, we present a randomized algorithm that samples a statistically significant set of points from the tail of ML outcome distributions even if the input dataset lacks a sufficient number of relevant samples. We conducted several experiments on four ML models (deep neural networks, logistic regression, and random forests) over 10 socially relevant tasks from the literature on algorithmic fairness. First, we evaluate the generative AI methods and find that they generate sufficient samples to infer valid EVT distribution in 95% of cases. Remarkably, we found that the prevalent bias mitigators reduce the average-case discrimination but increase the worst-case discrimination significantly in 5% of cases. We also observed that even the tail-aware mitigation algorithm -- MiniMax-Fairness -- increased the worst-case discrimination in 30% of cases. We propose a novel ECD-based mitigator that improves fairness in the tail in 90% of cases with no degradation of the average-case discrimination.
- Abstract(参考訳): データ駆動ソフトウェアは、自動意思決定システムの重要なコンポーネントとして、ますます利用されています。
このクラスのソフトウェアは、歴史的データから論理を学習するため、識別の慣行を符号化または増幅することができる。
アルゴリズムフェアネスに関するこれまでの研究は、平均ケースフェアネスの改善に重点を置いてきた。
一方、社会的態度の持続的で衝撃的な変化をしばしば示すスペクトルの極端における公平さは、著しく強調されている。
極値理論(EVT)の統計を応用し、極反事実判別(ECD)と呼ばれる新しい公正基準を提案する。
この基準は、保護グループにおけるメンバーシップのみに基づいて、個人にとって最悪の結果のデメリットを推定する。
検索ベースのソフトウェア工学と生成AIのツールを用いて、入力データセットに十分な数の関連するサンプルがなくても、ML結果分布の尾部から統計的に重要な点集合をサンプリングするランダム化アルゴリズムを提案する。
アルゴリズムの公正性に関する文献から,4つのMLモデル(ディープニューラルネットワーク,ロジスティック回帰,ランダム森林)について10以上の社会的関連課題について実験を行った。
まず、生成AI手法を評価し、95%のケースで有効なEVT分布を推測するのに十分なサンプルを生成することを発見した。
有意な点として, 偏差緩和剤は平均ケース識別を低下させるが, 5%のケースでは最悪のケース識別を著しく増加させることがわかった。
また、テール認識緩和アルゴリズムであるMiniMax-Fairnessでさえ、30%のケースで最悪のケースの識別が増加したことも観察した。
本研究では, 平均ケース識別の劣化のない90%の症例において, 尾部の公平性を向上する新しいECDベースのミミゲータを提案する。
関連論文リスト
- Thinking Racial Bias in Fair Forgery Detection: Models, Datasets and Evaluations [63.52709761339949]
最初に、Fair Forgery Detection(FairFD)データセットと呼ばれる専用のデータセットをコントリビュートし、SOTA(Public State-of-the-art)メソッドの人種的偏見を証明する。
我々は、偽りの結果を避けることができる平均的メトリクスと実用正規化メトリクスを含む新しいメトリクスを設計する。
また,有効で堅牢な後処理技術であるBias Pruning with Fair Activations (BPFA)も提案する。
論文 参考訳(メタデータ) (2024-07-19T14:53:18Z) - Fairness Without Harm: An Influence-Guided Active Sampling Approach [32.173195437797766]
我々は、モデルの精度に害を与えることなく、グループフェアネスの格差を軽減するモデルを訓練することを目指している。
公正なアクティブな学習アプローチのような現在のデータ取得方法は、通常、アノテートセンシティブな属性を必要とする。
トレーニンググループアノテーションに依存しない抽出可能なアクティブデータサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-20T07:57:38Z) - Fast Model Debias with Machine Unlearning [54.32026474971696]
ディープニューラルネットワークは多くの現実世界のシナリオでバイアスのある振る舞いをする。
既存のデバイアス法は、バイアスラベルやモデル再トレーニングのコストが高い。
バイアスを特定し,評価し,除去するための効率的なアプローチを提供する高速モデル脱バイアスフレームワーク(FMD)を提案する。
論文 参考訳(メタデータ) (2023-10-19T08:10:57Z) - Chasing Fairness Under Distribution Shift: A Model Weight Perturbation
Approach [72.19525160912943]
まず,分布シフト,データ摂動,モデルウェイト摂動の関連性を理論的に検証した。
次に、ターゲットデータセットの公平性を保証するのに十分な条件を分析します。
これらの十分な条件により、ロバストフェアネス正則化(RFR)を提案する。
論文 参考訳(メタデータ) (2023-03-06T17:19:23Z) - Aleatoric and Epistemic Discrimination: Fundamental Limits of Fairness Interventions [13.279926364884512]
機械学習モデルは、モデル開発時の選択とデータ固有のバイアスにより、特定の人口群で過小評価される可能性がある。
フェアネス制約下でのモデルの性能限界を決定することにより,アレータリック判別の定量化を行う。
本研究では, 公平性制約を適用した際のモデルの精度と, アレタリック判別による限界とのギャップとして, てんかんの判別を定量化する。
論文 参考訳(メタデータ) (2023-01-27T15:38:20Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
D-BIASは、人間のループ内AIアプローチを具現化し、社会的バイアスを監査し軽減する視覚対話型ツールである。
ユーザは、因果ネットワークにおける不公平な因果関係を識別することにより、グループに対する偏見の存在を検出することができる。
それぞれのインタラクション、例えばバイアスのある因果縁の弱体化/削除は、新しい(偏りのある)データセットをシミュレートするために、新しい方法を用いている。
論文 参考訳(メタデータ) (2022-08-10T03:41:48Z) - Fairness-Aware Naive Bayes Classifier for Data with Multiple Sensitive
Features [0.0]
2-naive-Bayes (2NB) をN-naive-Bayes (NNB) に一般化し、データ中の2つのセンシティブなグループを仮定することの単純化を回避する。
本稿では,複数の感度特徴を持つデータへの適用について検討し,差分フェアネスを強制する新しい制約・後処理ルーチンを提案する。
論文 参考訳(メタデータ) (2022-02-23T13:32:21Z) - Normalise for Fairness: A Simple Normalisation Technique for Fairness in Regression Machine Learning Problems [46.93320580613236]
回帰問題に対する正規化(FaiReg)に基づく単純かつ効果的な手法を提案する。
データバランシングと敵対的トレーニングという,公正性のための2つの標準的な手法と比較する。
その結果、データバランスよりも不公平さの影響を低減できる優れた性能を示した。
論文 参考訳(メタデータ) (2022-02-02T12:26:25Z) - Statistical discrimination in learning agents [64.78141757063142]
統計的差別は、訓練人口のバイアスとエージェントアーキテクチャの両方の関数としてエージェントポリシーに現れる。
我々は、リカレントニューラルネットワークを使用するエージェントによる差別の低減と、トレーニング環境のバイアスの低減が示される。
論文 参考訳(メタデータ) (2021-10-21T18:28:57Z) - Data Augmentation Imbalance For Imbalanced Attribute Classification [60.71438625139922]
本稿では,データ拡張不均衡(DAI)と呼ばれる新しい再サンプリングアルゴリズムを提案する。
我々のDAIアルゴリズムは歩行者属性のデータセットに基づいて最先端の結果を得る。
論文 参考訳(メタデータ) (2020-04-19T20:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。