論文の概要: StAyaL | Multilingual Style Transfer
- arxiv url: http://arxiv.org/abs/2501.11639v1
- Date: Mon, 20 Jan 2025 18:13:18 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:25:47.515821
- Title: StAyaL | Multilingual Style Transfer
- Title(参考訳): StAyaL : 多言語スタイルの転送
- Authors: Karishma Thakrar, Katrina Lawrence, Kyle Howard,
- Abstract要約: 100行のテキストのみを活用することで、個人独自のスタイルを高次元埋め込みとして捉えることができることを示す。
この方法論は、話者のスタイルを言語間で転送することで、言語障壁を壊します。
提案手法は,それぞれ74.9%,0.75の試験精度とF1スコアを有するトピックに依存しない。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Stylistic text generation plays a vital role in enhancing communication by reflecting the nuances of individual expression. This paper presents a novel approach for generating text in a specific speaker's style across different languages. We show that by leveraging only 100 lines of text, an individuals unique style can be captured as a high-dimensional embedding, which can be used for both text generation and stylistic translation. This methodology breaks down the language barrier by transferring the style of a speaker between languages. The paper is structured into three main phases: augmenting the speaker's data with stylistically consistent external sources, separating style from content using machine learning and deep learning techniques, and generating an abstract style profile by mean pooling the learned embeddings. The proposed approach is shown to be topic-agnostic, with test accuracy and F1 scores of 74.9\% and 0.75, respectively. The results demonstrate the potential of the style profile for multilingual communication, paving the way for further applications in personalized content generation and cross-linguistic stylistic transfer.
- Abstract(参考訳): 立体テキスト生成は、個々の表現のニュアンスを反映してコミュニケーションを強化する上で重要な役割を担っている。
本稿では,異なる言語にまたがって,特定の話者のスタイルでテキストを生成する新しい手法を提案する。
100行のテキストのみを活用することで、個人独自のスタイルを高次元の埋め込みとして捉えることができ、テキスト生成とスタイリスティックな翻訳の両方に使用できることを示す。
この方法論は、話者のスタイルを言語間で転送することで、言語障壁を壊します。
講演者のデータをスタイリスティックに一貫した外部ソースで拡張し、機械学習とディープラーニング技術を用いてコンテンツからスタイルを分離し、学習した埋め込みをプールすることで抽象的なスタイルプロファイルを生成する。
提案手法は,テスト精度が74.9\%,F1スコアが0.75。
その結果、多言語コミュニケーションのためのスタイルプロファイルの可能性を示し、パーソナライズされたコンテンツ生成と多言語間スタイリスティックトランスファーにおけるさらなる応用の道を開くことができた。
関連論文リスト
- Towards Visual Text Design Transfer Across Languages [49.78504488452978]
マルチモーダル・スタイル翻訳(MuST-Bench)の新たな課題について紹介する。
MuST-Benchは、視覚テキスト生成モデルが様々な書き込みシステム間で翻訳を行う能力を評価するために設計されたベンチマークである。
そこで我々は,スタイル記述の必要性を解消する多モーダルなスタイル翻訳フレームワークであるSIGILを紹介した。
論文 参考訳(メタデータ) (2024-10-24T15:15:01Z) - Learning to Generate Text in Arbitrary Writing Styles [6.7308816341849695]
言語モデルは、潜在的に小さな文章サンプルに基づいて、著者固有のスタイルでテキストを作成することが望ましい。
本稿では,テクスチャ的特徴を捉えた対照的に訓練された表現を用いて,ターゲットスタイルのテキストを生成するための言語モデルを提案する。
論文 参考訳(メタデータ) (2023-12-28T18:58:52Z) - ParaGuide: Guided Diffusion Paraphrasers for Plug-and-Play Textual Style
Transfer [57.6482608202409]
テキストスタイル転送は、意味を保ちながらテキストのスタイル特性を変換するタスクである。
任意のスタイルに柔軟に適応できる汎用型転送のための新しい拡散型フレームワークを提案する。
本研究では,人的評価と自動評価の両面から,Enron Email Corpusの手法を検証するとともに,形式性,感情,さらにはオーサシップスタイルの伝達にも優れることを示す。
論文 参考訳(メタデータ) (2023-08-29T17:36:02Z) - Stylized Data-to-Text Generation: A Case Study in the E-Commerce Domain [53.22419717434372]
本稿では,特定のスタイルに従ってコヒーレントテキストを生成することを目的とした新しいタスク,すなわちスタイル化されたデータ・テキスト生成を提案する。
このタスクは、生成されたテキストのロジック、構造化されていないスタイル参照、バイアスのあるトレーニングサンプルという3つの課題のため、簡単ではない。
本稿では,論理計画型データ埋め込み,マスク型スタイル埋め込み,非バイアス型スタイリングテキスト生成の3つのコンポーネントからなる,新しいスタイル付きデータ・テキスト生成モデルであるStyleD2Tを提案する。
論文 参考訳(メタデータ) (2023-05-05T03:02:41Z) - StylerDALLE: Language-Guided Style Transfer Using a Vector-Quantized
Tokenizer of a Large-Scale Generative Model [64.26721402514957]
本論文では,自然言語を用いて抽象芸術スタイルを記述するスタイル転送手法であるStylerDALLEを提案する。
具体的には、非自己回帰的なトークンシーケンス変換として、言語誘導型転送タスクを定式化する。
スタイル情報を組み込むために,CLIPに基づく言語指導による強化学習戦略を提案する。
論文 参考訳(メタデータ) (2023-03-16T12:44:44Z) - Audience-Centric Natural Language Generation via Style Infusion [5.6732899077715375]
本稿では,事前学習された言語生成モデルにおける聴衆のスタイル的嗜好に影響を及ぼす,新しいスタイル注入の課題を提案する。
限定的な人間の判断を利用して、スタイル分析モデルをブートストラップし、シードセットの判断を強化する。
我々の注入アプローチは、ジェネリックテキストプロンプトを用いた魅力的なスタイル化された例を生成することができる。
論文 参考訳(メタデータ) (2023-01-24T19:57:50Z) - StoryTrans: Non-Parallel Story Author-Style Transfer with Discourse
Representations and Content Enhancing [73.81778485157234]
長文は通常、文よりも談話構造のような複雑な著者の言語的嗜好を含んでいる。
我々は、入力されたストーリーを特定の著者スタイルに転送する必要があるノン並列ストーリー作者スタイル転送のタスクを定式化する。
モデルが自動エンコーダに退化することを防ぐために,学習した談話表現からスタイル的特徴を引き離すための追加の学習目標を用いる。
論文 参考訳(メタデータ) (2022-08-29T08:47:49Z) - StyleBabel: Artistic Style Tagging and Captioning [38.792350870518504]
StyleBabelは、自然言語キャプションのユニークなオープンアクセスデータセットであり、135K以上のデジタルアートアートの芸術スタイルを記述したフリーフォームタグである。
論文 参考訳(メタデータ) (2022-03-10T12:15:55Z) - Improving Disentangled Text Representation Learning with
Information-Theoretic Guidance [99.68851329919858]
自然言語の独特な性質は、テキスト表現の分離をより困難にする。
情報理論にインスパイアされた本研究では,テキストの不整合表現を効果的に表現する手法を提案する。
条件付きテキスト生成とテキストスタイル転送の両方の実験は、不整合表現の質を実証する。
論文 参考訳(メタデータ) (2020-06-01T03:36:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。