Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning
- URL: http://arxiv.org/abs/2506.04723v1
- Date: Thu, 05 Jun 2025 07:53:59 GMT
- Title: Beyond Accuracy: Dissecting Mathematical Reasoning for LLMs Under Reinforcement Learning
- Authors: Jiayu Wang, Yifei Ming, Zixuan Ke, Caiming Xiong, Shafiq Joty, Aws Albarghouthi, Frederic Sala,
- Abstract summary: We introduce a fine-grained analytic framework to dissect the impact ofReinforcement learning on reasoning.<n>Our framework specifically investigates key elements that have been hypothesized to benefit from RL training.
- Score: 82.43575191712726
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning (RL) has become the dominant paradigm for endowing language models with advanced reasoning capabilities. Despite the substantial empirical gains demonstrated by RL-based training methods like GRPO, a granular understanding of their advantages is still lacking. To address this gap, we introduce a fine-grained analytic framework to dissect the impact of RL on reasoning. Our framework specifically investigates key elements that have been hypothesized to benefit from RL training: (1) plan-following and execution, (2) problem decomposition, and (3) improved reasoning and knowledge utilization. Using this framework, we gain insights beyond mere accuracy. For instance, providing models with explicit step-by-step plans surprisingly degrades performance on the most challenging benchmarks, yet RL-tuned models exhibit greater robustness, experiencing markedly smaller performance drops than their base counterparts. This suggests that RL may not primarily enhance the execution of external plans but rather empower models to formulate and follow internal strategies better suited to their reasoning processes. Conversely, we observe that RL enhances the model's capacity to integrate provided knowledge into its reasoning process, leading to performance improvements across diverse tasks. We also study difficulty, showing improved training by developing new ways to exploit hard problems. Our findings lay a foundation for more principled training and evaluation of reasoning models.
Related papers
- Scaling Up RL: Unlocking Diverse Reasoning in LLMs via Prolonged Training [121.5858973157225]
We investigate the effects of prolonged reinforcement learning on a small language model across a diverse set of reasoning domains.<n>We introduce controlled KL regularization, clipping ratio, and periodic reference policy resets as critical components for unlocking long-term performance gains.<n>Our model achieves significant improvements over strong baselines, including +14.7% on math, +13.9% on coding, and +54.8% on logic puzzle tasks.
arXiv Detail & Related papers (2025-07-16T17:59:24Z) - No Free Lunch: Rethinking Internal Feedback for LLM Reasoning [12.881043910316787]
Reinforcement learning has emerged as a powerful paradigm for post-training large language models (LLMs) to improve reasoning.<n>We investigate an alternative class of methods, Reinforcement Learning from Internal Feedback (RLIF), which relies solely on intrinsic model-derived signals instead of external rewards.
arXiv Detail & Related papers (2025-06-20T17:59:52Z) - Revisiting Reinforcement Learning for LLM Reasoning from A Cross-Domain Perspective [82.24301452333577]
Reinforcement learning (RL) has emerged as a promising approach to improve large language model (LLM) reasoning.<n>A key challenge lies in the lack of reliable, scalable RL reward signals across diverse reasoning domains.<n>We introduce Guru, a curated RL reasoning corpus of 92K verifiable examples spanning six reasoning domains.
arXiv Detail & Related papers (2025-06-17T20:24:00Z) - Learning What Reinforcement Learning Can't: Interleaved Online Fine-Tuning for Hardest Questions [28.962415274754537]
Large language model (LLM) reasoning has shown that sophisticated behaviors such as planning and self-reflection can emerge through reinforcement learning (RL)<n>We introduce a novel training approach, textbfReLIFT (textbfReinforcement textbfL textbfInterleaved with Online textbfFine-textbfTuning)<n>In ReLIFT, the model is primarily trained using RL, but when it encounters challenging questions, high-quality solutions are collected for fine-tuning, and the training process alternate
arXiv Detail & Related papers (2025-06-09T08:11:20Z) - On the Mechanism of Reasoning Pattern Selection in Reinforcement Learning for Language Models [17.36077163968198]
We present a systematic study of Reinforcement Learning with Verifiable Rewards (RLVR)<n>We show that RLVR-trained models preferentially adopt high-success-rate reasoning patterns.<n>We develop theoretical analyses on the convergence and training dynamics of RLVR.
arXiv Detail & Related papers (2025-06-05T07:17:04Z) - ProRL: Prolonged Reinforcement Learning Expands Reasoning Boundaries in Large Language Models [89.37819814048288]
We introduce ProRL, a novel training methodology that incorporates KL divergence control, reference policy, and a diverse suite of tasks.<n>Our empirical analysis reveals that RL-trained models consistently outperform base resetting models across a wide range of pass@k evaluations.<n>These findings offer new insights into the conditions under which RL meaningfully expands reasoning boundaries in language models.
arXiv Detail & Related papers (2025-05-30T17:59:01Z) - Behavior Injection: Preparing Language Models for Reinforcement Learning [24.46625106928253]
Reinforcement fine-tuning (RFT) has emerged as a powerful post-training technique to incentivize the reasoning ability of large language models (LLMs)<n>LLMs can respond very inconsistently to RFT: some show substantial performance gains, while others plateau or even degrade.<n>We propose behavior injection, a task-agnostic data-augmentation scheme applied prior to RL.
arXiv Detail & Related papers (2025-05-25T00:54:50Z) - AceReason-Nemotron: Advancing Math and Code Reasoning through Reinforcement Learning [50.02117478165099]
We show that large-scale reinforcement learning can significantly enhance the reasoning capabilities of strong, small- and mid-sized models.<n>We propose a simple yet effective approach: first training on math-only prompts, then on code-only prompts.
arXiv Detail & Related papers (2025-05-22T08:50:47Z) - Echo Chamber: RL Post-training Amplifies Behaviors Learned in Pretraining [74.83412846804977]
Reinforcement learning (RL)-based fine-tuning has become a crucial step in post-training language models.<n>We present a systematic end-to-end study of RL fine-tuning for mathematical reasoning by training models entirely from scratch.
arXiv Detail & Related papers (2025-04-10T17:15:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.