Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
- URL: http://arxiv.org/abs/2501.11695v1
- Date: Mon, 20 Jan 2025 19:20:13 GMT
- Title: Spatially-Delineated Domain-Adapted AI Classification: An Application for Oncology Data
- Authors: Majid Farhadloo, Arun Sharma, Alexey Leontovich, Svetomir N. Markovic, Shashi Shekhar,
- Abstract summary: Given multi-type point maps from different place-types, our objective is to develop a trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements.
This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment.
We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated AI classification.
- Score: 3.0566763412020714
- License:
- Abstract: Given multi-type point maps from different place-types (e.g., tumor regions), our objective is to develop a classifier trained on the source place-type to accurately distinguish between two classes of the target place-type based on their point arrangements. This problem is societally important for many applications, such as generating clinical hypotheses for designing new immunotherapies for cancer treatment. The challenge lies in the spatial variability, the inherent heterogeneity and variation observed in spatial properties or arrangements across different locations (i.e., place-types). Previous techniques focus on self-supervised tasks to learn domain-invariant features and mitigate domain differences; however, they often neglect the underlying spatial arrangements among data points, leading to significant discrepancies across different place-types. We explore a novel multi-task self-learning framework that targets spatial arrangements, such as spatial mix-up masking and spatial contrastive predictive coding, for spatially-delineated domain-adapted AI classification. Experimental results on real-world datasets (e.g., oncology data) show that the proposed framework provides higher prediction accuracy than baseline methods.
Related papers
- Revisiting Adaptive Cellular Recognition Under Domain Shifts: A Contextual Correspondence View [49.03501451546763]
We identify the importance of implicit correspondences across biological contexts for exploiting domain-invariant pathological composition.
We propose self-adaptive dynamic distillation to secure instance-aware trade-offs across different model constituents.
arXiv Detail & Related papers (2024-07-14T04:41:16Z) - Towards Spatially-Lucid AI Classification in Non-Euclidean Space: An
Application for MxIF Oncology Data [3.0566763412020714]
Given multi-category point sets from different place-types, our goal is to develop a spatially-lucid classifier.
This problem is important for many applications, such as oncology, for analyzing immune-tumor relationships and designing new immunotherapies.
We explore a spatial ensemble framework that explicitly uses different training strategies, including weighted-distance learning rate and spatial domain adaptation.
arXiv Detail & Related papers (2024-02-22T21:22:21Z) - Domain-invariant Clinical Representation Learning by Bridging Data Distribution Shift across EMR Datasets [28.59271580918754]
An effective prognostic model could assist physicians in making accurate diagnoses and designing personalized treatment plans.
limited data collection, insufficient clinical experience, and privacy and ethical concerns restrict data availability.
We present a domain-invariant representation learning method that constructs a transition model between source and target datasets.
arXiv Detail & Related papers (2023-10-11T18:32:21Z) - Robust Domain Adaptive Object Detection with Unified Multi-Granularity Alignment [59.831917206058435]
Domain adaptive detection aims to improve the generalization of detectors on target domain.
Recent approaches achieve domain adaption through feature alignment in different granularities via adversarial learning.
We introduce a unified multi-granularity alignment (MGA)-based detection framework for domain-invariant feature learning.
arXiv Detail & Related papers (2023-01-01T08:38:07Z) - Deep face recognition with clustering based domain adaptation [57.29464116557734]
We propose a new clustering-based domain adaptation method designed for face recognition task in which the source and target domain do not share any classes.
Our method effectively learns the discriminative target feature by aligning the feature domain globally, and, at the meantime, distinguishing the target clusters locally.
arXiv Detail & Related papers (2022-05-27T12:29:11Z) - Domain-Adversarial Training of Self-Attention Based Networks for Land
Cover Classification using Multi-temporal Sentinel-2 Satellite Imagery [0.0]
Most practical applications cannot rely on labeled data, and in the field, surveys are a time consuming solution.
In this paper, we investigate adversarial training of deep neural networks to bridge the domain discrepancy between distinct geographical zones.
arXiv Detail & Related papers (2021-04-01T15:45:17Z) - Embracing the Disharmony in Heterogeneous Medical Data [12.739380441313022]
Heterogeneity in medical imaging data is often tackled, in the context of machine learning, using domain invariance.
This paper instead embraces the heterogeneity and treats it as a multi-task learning problem.
We show that this approach improves classification accuracy by 5-30 % across different datasets on the main classification tasks.
arXiv Detail & Related papers (2021-03-23T21:36:39Z) - Adaptively-Accumulated Knowledge Transfer for Partial Domain Adaptation [66.74638960925854]
Partial domain adaptation (PDA) deals with a realistic and challenging problem when the source domain label space substitutes the target domain.
We propose an Adaptively-Accumulated Knowledge Transfer framework (A$2$KT) to align the relevant categories across two domains.
arXiv Detail & Related papers (2020-08-27T00:53:43Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.