論文の概要: Episodic memory in AI agents poses risks that should be studied and mitigated
- arxiv url: http://arxiv.org/abs/2501.11739v2
- Date: Wed, 22 Jan 2025 15:09:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:51.196142
- Title: Episodic memory in AI agents poses risks that should be studied and mitigated
- Title(参考訳): AIエージェントにおけるエピソード記憶は、研究と緩和すべきリスクを生じさせる
- Authors: Chad DeChant,
- Abstract要約: 現在のAIモデルのほとんどは、保存する能力がほとんどなく、後にその動作の記録や表現を取得できる。
人間の認知において、エピソード記憶は、過去の思い出と将来の計画の両方において重要な役割を果たす。
研究者たちは、AIモデルにおけるメモリ能力の開発により多くの注意を向け始めている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Most current AI models have little ability to store and later retrieve a record or representation of what they do. In human cognition, episodic memories play an important role in both recall of the past as well as planning for the future. The ability to form and use episodic memories would similarly enable a broad range of improved capabilities in an AI agent that interacts with and takes actions in the world. Researchers have begun directing more attention to developing memory abilities in AI models. It is therefore likely that models with such capability will be become widespread in the near future. This could in some ways contribute to making such AI agents safer by enabling users to better monitor, understand, and control their actions. However, as a new capability with wide applications, we argue that it will also introduce significant new risks that researchers should begin to study and address. We outline these risks and benefits and propose four principles to guide the development of episodic memory capabilities so that these will enhance, rather than undermine, the effort to keep AI safe and trustworthy.
- Abstract(参考訳): 現在のAIモデルのほとんどは、保存する能力がほとんどなく、後にその動作の記録や表現を取得できる。
人間の認知において、エピソード記憶は、過去の思い出と将来の計画の両方において重要な役割を果たす。
エピソード記憶を形成、使用する能力は、同様に、世界のアクションと対話し、取り込むAIエージェントにおいて、幅広い改善された能力を可能にする。
研究者たちは、AIモデルにおけるメモリ能力の開発により多くの注意を向け始めている。
したがって、近い将来、そのような能力を持つモデルが普及する可能性が高い。
これは、ユーザーがアクションをよりよく監視し、理解し、制御できるようにすることによって、そのようなAIエージェントをより安全にすることに貢献し得る。
しかし、幅広い応用の新たな能力として、研究者が研究し、対処し始めるべき重要な新しいリスクがもたらされることを論じる。
これらのリスクとメリットを概説し、エピソード記憶能力の発展を導くための4つの原則を提案します。
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Explainable Human-AI Interaction: A Planning Perspective [32.477369282996385]
AIシステムは、ループ内の人間に説明可能である必要がある。
我々は、AIエージェントがメンタルモデルを使用して人間の期待に沿うか、あるいは説明的コミュニケーションを通じて期待を変更する方法について論じる。
本書の主な焦点は、協調的なシナリオであるが、同じ精神モデルが難読化や偽造にどのように使用できるかを指摘したい。
論文 参考訳(メタデータ) (2024-05-19T22:22:21Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
エージェントAI - 大きな基盤モデルをエージェントアクションに統合する具体的システム。
本稿では,エージェント・ファウンデーション・モデル(エージェント・ファウンデーション・モデル)を提案する。
論文 参考訳(メタデータ) (2024-02-28T16:09:56Z) - Enabling High-Level Machine Reasoning with Cognitive Neuro-Symbolic
Systems [67.01132165581667]
本稿では,認知アーキテクチャを外部のニューロシンボリックコンポーネントと統合することにより,AIシステムにおける高レベル推論を実現することを提案する。
本稿では,ACT-Rを中心としたハイブリッドフレームワークについて紹介し,最近の応用における生成モデルの役割について論じる。
論文 参考訳(メタデータ) (2023-11-13T21:20:17Z) - Exploration with Principles for Diverse AI Supervision [88.61687950039662]
次世代の予測を用いた大規模トランスフォーマーのトレーニングは、AIの画期的な進歩を生み出した。
この生成AIアプローチは印象的な結果をもたらしたが、人間の監督に大きく依存している。
この人間の監視への強い依存は、AIイノベーションの進歩に重大なハードルをもたらす。
本稿では,高品質なトレーニングデータを自律的に生成することを目的とした,探索型AI(EAI)という新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:03:39Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Thinking Fast and Slow in AI: the Role of Metacognition [35.114607887343105]
最先端のAIには、(人間)インテリジェンスの概念に自然に含まれる多くの能力がない。
私たちは、人間がこれらの能力を持つことができるメカニズムをよりよく研究することで、これらの能力でAIシステムを構築する方法を理解するのに役立ちます。
論文 参考訳(メタデータ) (2021-10-05T06:05:38Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Dynamic Cognition Applied to Value Learning in Artificial Intelligence [0.0]
この分野の数人の研究者が、堅牢で有益で安全な人工知能の概念を開発しようとしている。
人工知能エージェントが人間の価値観に合わせた価値を持っていることは、最も重要である。
この問題に対する可能なアプローチは、SEDのような理論モデルを使用することである。
論文 参考訳(メタデータ) (2020-05-12T03:58:52Z) - A Proposal for Intelligent Agents with Episodic Memory [0.9236074230806579]
エージェントはエピソード記憶の恩恵を受けるだろうと我々は主張する。
このメモリはエージェントの経験をエージェントが経験を信頼できるようにエンコードする。
本稿では,ANNと標準計算機科学技術を組み合わせて,エピソード記憶の記憶と検索を支援するアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-05-07T00:26:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。