論文の概要: Non-Reversible Langevin Algorithms for Constrained Sampling
- arxiv url: http://arxiv.org/abs/2501.11743v1
- Date: Mon, 20 Jan 2025 21:04:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:19:34.994397
- Title: Non-Reversible Langevin Algorithms for Constrained Sampling
- Title(参考訳): 制約サンプリングのための非可逆的ランゲヴィンアルゴリズム
- Authors: Hengrong Du, Qi Feng, Changwei Tu, Xiaoyu Wang, Lingjiong Zhu,
- Abstract要約: 本研究では,制約領域上の対象分布から標本化することを目的とする制約サンプリング問題を考察する。
SRNLD(skew-reflected non-reversible Langevin dynamics)を提案する。
我々は,SRNLDの非漸近収束速度を,全変量と1-ワッサーシュタイン距離の両方の目標分布に求める。
- 参考スコア(独自算出の注目度): 13.472207533177151
- License:
- Abstract: We consider the constrained sampling problem where the goal is to sample from a target distribution on a constrained domain. We propose skew-reflected non-reversible Langevin dynamics (SRNLD), a continuous-time stochastic differential equation with skew-reflected boundary. We obtain non-asymptotic convergence rate of SRNLD to the target distribution in both total variation and 1-Wasserstein distances. By breaking reversibility, we show that the convergence is faster than the special case of the reversible dynamics. Based on the discretization of SRNLD, we propose skew-reflected non-reversible Langevin Monte Carlo (SRNLMC), and obtain non-asymptotic discretization error from SRNLD, and convergence guarantees to the target distribution in 1-Wasserstein distance. We show better performance guarantees than the projected Langevin Monte Carlo in the literature that is based on the reversible dynamics. Numerical experiments are provided for both synthetic and real datasets to show efficiency of the proposed algorithms.
- Abstract(参考訳): 本研究では,制約領域上の対象分布から標本化することを目的とする制約サンプリング問題を考察する。
本研究では、スキュー-反射境界を持つ連続時間確率微分方程式であるスキュー-反射非可逆ランゲヴィンダイナミクス(SRNLD)を提案する。
我々は,SRNLDの非漸近収束速度を,全変量と1-ワッサーシュタイン距離の両方の目標分布に求める。
可逆性を破ることにより、収束は可逆力学の特別な場合よりも高速であることを示す。
SRNLDの離散化に基づいて、スキュー反射非可逆ランゲヴィンモンテカルロ(SRNLMC)を提案し、SRNLDから非漸近離散化誤差を求め、1-ワッサーシュタイン距離における目標分布の収束を保証する。
可逆力学に基づく文献において、予測されたランゲヴィン・モンテカルロよりも優れた性能保証を示す。
提案アルゴリズムの効率性を示すために,合成データセットと実データセットの両方に数値実験を行った。
関連論文リスト
- Constrained Sampling with Primal-Dual Langevin Monte Carlo [15.634831573546041]
この研究は、正規化定数まで既知の確率分布からサンプリングする問題を考察する。
一般非線形関数の期待値によって定義された統計的制約の集合を満たす。
我々は,目標分布とサンプルを同時に制約する離散時間原始二元Langevin Monte Carloアルゴリズム(PD-LMC)を提唱した。
論文 参考訳(メタデータ) (2024-11-01T13:26:13Z) - Faster Sampling via Stochastic Gradient Proximal Sampler [28.422547264326468]
非log-concave分布からのサンプリングのための近位サンプリング器 (SPS) について検討した。
対象分布への収束性は,アルゴリズムの軌道が有界である限り保証可能であることを示す。
我々は、Langevin dynamics(SGLD)とLangevin-MALAの2つの実装可能な変種を提供し、SPS-SGLDとSPS-MALAを生み出した。
論文 参考訳(メタデータ) (2024-05-27T00:53:18Z) - Symmetric Mean-field Langevin Dynamics for Distributional Minimax
Problems [78.96969465641024]
平均場ランゲヴィンのダイナミクスを、対称で証明可能な収束した更新で、初めて確率分布に対する最小の最適化に拡張する。
また,時間と粒子の離散化機構について検討し,カオス結果の新たな均一時間伝播を証明した。
論文 参考訳(メタデータ) (2023-12-02T13:01:29Z) - Adaptive Annealed Importance Sampling with Constant Rate Progress [68.8204255655161]
Annealed Importance Smpling (AIS)は、抽出可能な分布から重み付けされたサンプルを合成する。
本稿では,alpha$-divergencesに対する定数レートAISアルゴリズムとその効率的な実装を提案する。
論文 参考訳(メタデータ) (2023-06-27T08:15:28Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms [14.174806471635403]
粒子ダイナミック(IPD)に対するグラディエント・ランゲヴィン・ダイナミクス(SGLD)やランダムバッチ法(RBM)などのサンプリングアルゴリズムの近似を考察する。
近似によって生じる雑音は中央極限定理(CLT)によりほぼガウス的であるが、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の近似誤差を吸収し、これらのアルゴリズムの収束保証を改善する。
論文 参考訳(メタデータ) (2022-06-08T10:17:40Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Faster Convergence of Stochastic Gradient Langevin Dynamics for
Non-Log-Concave Sampling [110.88857917726276]
我々は,非log-concaveとなる分布のクラスからサンプリングするために,勾配ランゲヴィンダイナミクス(SGLD)の新たな収束解析を行う。
我々のアプローチの核心は、補助的時間反転型マルコフ連鎖を用いたSGLDのコンダクタンス解析である。
論文 参考訳(メタデータ) (2020-10-19T15:23:18Z) - Non-Convex Optimization via Non-Reversible Stochastic Gradient Langevin
Dynamics [27.097121544378528]
グラディエント・ランゲヴィン・ダイナミクス (Gradient Langevin Dynamics, SGLD) は、非目的勾配を最適化する強力なアルゴリズムである。
NSGLDは非可逆拡散の離散化に基づいている。
論文 参考訳(メタデータ) (2020-04-06T17:11:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。