論文の概要: Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms
- arxiv url: http://arxiv.org/abs/2206.03792v5
- Date: Sat, 1 Jul 2023 16:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 16:07:53.702325
- Title: Utilising the CLT Structure in Stochastic Gradient based Sampling :
Improved Analysis and Faster Algorithms
- Title(参考訳): 確率勾配に基づくサンプリングにおけるCLT構造の利用 : 解析と高速アルゴリズムの改良
- Authors: Aniket Das, Dheeraj Nagaraj and Anant Raj
- Abstract要約: 粒子ダイナミック(IPD)に対するグラディエント・ランゲヴィン・ダイナミクス(SGLD)やランダムバッチ法(RBM)などのサンプリングアルゴリズムの近似を考察する。
近似によって生じる雑音は中央極限定理(CLT)によりほぼガウス的であるが、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の近似誤差を吸収し、これらのアルゴリズムの収束保証を改善する。
- 参考スコア(独自算出の注目度): 14.174806471635403
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider stochastic approximations of sampling algorithms, such as
Stochastic Gradient Langevin Dynamics (SGLD) and the Random Batch Method (RBM)
for Interacting Particle Dynamcs (IPD). We observe that the noise introduced by
the stochastic approximation is nearly Gaussian due to the Central Limit
Theorem (CLT) while the driving Brownian motion is exactly Gaussian. We harness
this structure to absorb the stochastic approximation error inside the
diffusion process, and obtain improved convergence guarantees for these
algorithms. For SGLD, we prove the first stable convergence rate in KL
divergence without requiring uniform warm start, assuming the target density
satisfies a Log-Sobolev Inequality. Our result implies superior first-order
oracle complexity compared to prior works, under significantly milder
assumptions. We also prove the first guarantees for SGLD under even weaker
conditions such as H\"{o}lder smoothness and Poincare Inequality, thus bridging
the gap between the state-of-the-art guarantees for LMC and SGLD. Our analysis
motivates a new algorithm called covariance correction, which corrects for the
additional noise introduced by the stochastic approximation by rescaling the
strength of the diffusion. Finally, we apply our techniques to analyze RBM, and
significantly improve upon the guarantees in prior works (such as removing
exponential dependence on horizon), under minimal assumptions.
- Abstract(参考訳): 本稿では,SGLD(Stochastic Gradient Langevin Dynamics)やIPD(Interacting Particle Dynamcs)のためのRBM(Random Batch Method)などのサンプリングアルゴリズムの確率近似について考察する。
確率近似によって生じる雑音は、中央極限定理(CLT)によりほぼガウス的であり、ブラウン運動はまさにガウス的である。
この構造を利用して拡散過程内の確率近似誤差を吸収し、これらのアルゴリズムに対する収束保証を改善する。
SGLDの場合、ターゲット密度が対数ソボレフ不等式を満たすことを前提として、均一な温暖開始を必要としないKL分散の最初の安定収束速度を証明した。
以上の結果から, 先行研究と比較して, 比較的軽度な仮定の下で, 第一次オラクル複雑性が優れていることが示唆された。
また, H\"{o}lder smoothness や Poincare inequality といった,より弱い条件下でのSGLDの保証も証明し, LMC と SGLD の最先端保証とのギャップを埋める。
本解析は, 拡散強度の再スケーリングにより, 確率近似により生じる付加ノイズを補正する共分散補正と呼ばれる新しいアルゴリズムを動機付ける。
最後に,本手法をrbm分析に適用し,最小限の仮定の下で,先行研究(地平線上の指数依存の除去など)における保証を大幅に改善した。
関連論文リスト
- Gradient Normalization with(out) Clipping Ensures Convergence of Nonconvex SGD under Heavy-Tailed Noise with Improved Results [60.92029979853314]
本稿では,NSGDCを含まない勾配正規化(NSGDC-VR)について検討する。
両アルゴリズムの理論的結果の大幅な改善について述べる。
論文 参考訳(メタデータ) (2024-10-21T22:40:42Z) - FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse
optimisation on Measures [1.9950682531209156]
本稿では,コニックパーティクルグラディエントDescent(CPGD)のスケーラビリティを高めるために,ランダム特徴と協調してグラディエントDescent戦略を利用する新しいアルゴリズムを提案する。
i) 降下軌道に沿った解の総変動規範は、安定を保ち、望ましくないばらつきを防止し、 (ii) 収率$mathcalO(log(K)/sqrtK)$$$K以上の大域収束保証を確立し、アルゴリズムの効率と有効性を示す; (iii) さらに、分析と確立を行う。
論文 参考訳(メタデータ) (2023-12-10T20:41:43Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
グラディエントDescent(SGD)のための量子クリッピング戦略を導入する。
通常のクリッピングチェーンとして、グラデーション・ニュー・アウトリージを使用します。
本稿では,Huberiles を用いたアルゴリズムの実装を提案する。
論文 参考訳(メタデータ) (2023-09-29T15:24:48Z) - Computing the Variance of Shuffling Stochastic Gradient Algorithms via
Power Spectral Density Analysis [6.497816402045099]
理論上の利点を持つ勾配降下(SGD)の2つの一般的な選択肢は、ランダムリシャッフル(SGDRR)とシャッフルオンス(SGD-SO)である。
本研究では,SGD,SGDRR,SGD-SOの定常変動について検討した。
論文 参考訳(メタデータ) (2022-06-01T17:08:04Z) - Minibatch vs Local SGD with Shuffling: Tight Convergence Bounds and
Beyond [63.59034509960994]
シャッフルに基づく変種(ミニバッチと局所ランダムリシャッフル)について検討する。
ポリアック・ロジャシエヴィチ条件を満たす滑らかな函数に対して、これらのシャッフル型不変量(英語版)(shuffling-based variants)がそれらの置換式よりも早く収束することを示す収束境界を得る。
我々は, 同期シャッフル法と呼ばれるアルゴリズムの修正を提案し, ほぼ均一な条件下では, 下界よりも収束速度が速くなった。
論文 参考訳(メタデータ) (2021-10-20T02:25:25Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
本稿では, ステップサイズが一定であるSEG法の解析を行い, 良好な収束をもたらす手法のバリエーションを示す。
平均化で拡張した場合、SEGはナッシュ平衡に確実に収束し、スケジュールされた再起動手順を組み込むことで、その速度が確実に加速されることを証明した。
論文 参考訳(メタデータ) (2021-06-30T17:51:36Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient
Clipping [69.9674326582747]
そこで本研究では,重み付き分散雑音を用いたスムーズな凸最適化のための,クリップ付きSSTMと呼ばれる新しい1次高速化手法を提案する。
この場合、最先端の結果を上回る新たな複雑さが証明される。
本研究は,SGDにおいて,ノイズに対する光細かな仮定を伴わずにクリッピングを施した最初の非自明な高確率複雑性境界を導出した。
論文 参考訳(メタデータ) (2020-05-21T17:05:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。