論文の概要: Disentangling stellar atmospheric parameters in astronomical spectra using Generative Adversarial Neural Networks
- arxiv url: http://arxiv.org/abs/2501.11762v1
- Date: Mon, 20 Jan 2025 21:53:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:19:33.668381
- Title: Disentangling stellar atmospheric parameters in astronomical spectra using Generative Adversarial Neural Networks
- Title(参考訳): 生成逆ニューラルネットワークを用いた天文スペクトルにおける恒星大気の遠方性パラメータ
- Authors: Minia Manteiga, Raúl Santoveña, Marco A. Álvarez, Carlos Dafonte, Manuel G. Penedo, Silvana Navarro, Luis Corral,
- Abstract要約: 天体スペクトルにおける物理的(有効温度と重力)と化学的(金属性、鉄に対するa元素の過剰な存在)の大気特性を解消するためのGAN(Generative Adversaria! Networks)に基づく手法を開発した。
- 参考スコア(独自算出の注目度): 0.7758482228293941
- License:
- Abstract: A method based on Generative Adversaria! Networks (GANs) is developed for disentangling the physical (effective temperature and gravity) and chemical (metallicity, overabundance of a-elements with respect to iron) atmospheric properties in astronomical spectra. Using a projection of the stellar spectra, commonly called latent space, in which the contribution dueto one or several main stellar physicochemical properties is minimised while others are enhanced, it was possible to maximise the information related to certain properties, which can then be extracted using artificial neural networks (ANN) as regressors with higher accuracy than a reference method based on the use of ANN trained with the original spectra. Methods. Our model utilises autoencoders, comprising two artificial neural networks: an encoder anda decoder which transform input data into a low-dimensional representation known as latent space. It also uses discriminators, which are additional neural networks aimed at transforming the traditional autoencoder training into an adversaria! approach, to disentangle or reinforce the astrophysical parameters from the latent space. The GANDALF tool is described. It was developed to define, train, and test our GAN model with a web framework to show how the disentangling algorithm works visually. It is open to the community in Github. Results. The performance of our approach for retrieving atmospheric stellar properties from spectra is demonstrated using Gaia Radial Velocity Spectrograph (RVS) data from DR3. We use a data-driven perspective and obtain very competitive values, ali within the literature errors, and with the advantage of an important dimensionality reduction of the data to be processed.
- Abstract(参考訳): Generative Adversaria!
ネットワーク(GAN)は、天体スペクトルにおける物理的(有効温度と重力)と化学的(金属性、鉄に対するa元素の過剰な存在)の大気特性を解消するために開発された。
1つまたは複数の主星物理化学的性質への寄与を最小化し、他のものを拡張した恒星スペクトルの投影を用いて、特定の性質に関連する情報を最大化し、元のスペクトルで訓練されたANNを用いた基準法よりも高い精度で、人工ニューラルネットワーク(ANN)を用いて抽出することができる。
メソッド。
本モデルでは,入力データをラテント空間と呼ばれる低次元の表現に変換するエンコーダとデコーダという,2つの人工ニューラルネットワークからなるオートエンコーダを利用する。
また、従来のオートエンコーダトレーニングを逆境に転換することを目的とした、追加のニューラルネットワークである識別器を使用して、潜在空間から天体物理学パラメータをアンタングルまたは強化する。
GANDALFツールについて説明する。
GANモデルをWebフレームワークで定義し、トレーニングし、テストするために開発された。
Githubでコミュニティに公開されています。
結果。
スペクトルから大気の恒星特性を回収する手法の性能を, DR3 の Gaia Radial Velocity Spectrograph (RVS) データを用いて実証した。
我々は、データ駆動の視点を用いて非常に競争力のある値を求め、文献の誤りに対処し、処理すべきデータの重要な次元的削減の利点を生かした。
関連論文リスト
- A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra [0.16385815610837165]
本研究では, 天体物理スペクトル解析の文脈において, 敵の訓練を行うエンコーダ・デコーダアーキテクチャを設計した。
深層学習のスキームは、データに含まれる残りの情報のパラメータを潜在空間で解き放つことを目的として使用される。
この方法の有効性を検証するため,APOGEE と Gaia の調査から合成天文学データを用いた。
論文 参考訳(メタデータ) (2024-11-08T20:45:09Z) - Efficient representation learning of scintillation signal characteristics with spectrum-inspired temporal neural networks [1.124958340749622]
シンチレータを用いた核放射線検出器は、粒子・高エネルギー物理実験、核医学イメージング、産業・環境検出等に広く利用されている。
本稿では,従来の時系列解析に基づくシンチレーション信号のキャラクタリゼーションに適したネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-10-09T02:44:53Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
グラフニューラルネットワーク(GNN)に基づく教師なしグラフ表現学習(UGRL)
マルチホップ特徴量推定(MQE)に基づく新しいUGRL法を提案する。
論文 参考訳(メタデータ) (2024-07-29T12:24:28Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
SpectralGPTという名前のユニバーサルRS基盤モデルは、新しい3D生成事前学習変換器(GPT)を用いてスペクトルRS画像を処理するために構築されている。
既存の基礎モデルと比較して、SpectralGPTは、様々なサイズ、解像度、時系列、領域をプログレッシブトレーニング形式で対応し、広範なRSビッグデータのフル活用を可能にする。
我々の評価では、事前訓練されたスペクトルGPTモデルによる顕著な性能向上が強調され、地球科学分野におけるスペクトルRSビッグデータ応用の進展に有意な可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-13T07:09:30Z) - NeuRBF: A Neural Fields Representation with Adaptive Radial Basis
Functions [93.02515761070201]
本稿では,信号表現に一般放射状基底を用いる新しいタイプのニューラルネットワークを提案する。
提案手法は, 空間適応性が高く, ターゲット信号により密着可能な, フレキシブルなカーネル位置と形状を持つ一般ラジアルベース上に構築する。
ニューラルラジアンス場再構成に適用した場合,本手法はモデルサイズが小さく,訓練速度が同等である最先端のレンダリング品質を実現する。
論文 参考訳(メタデータ) (2023-09-27T06:32:05Z) - High-precision interpolation of stellar atmospheres with a deep neural
network using a 1D convolutional auto encoder for feature extraction [0.0]
我々は、恒星モデル大気を回復するための信頼性、正確、軽量、高速な方法を確立する。
我々は、完全に接続されたディープニューラルネットワークを使用し、1次元畳み込みオートエンコーダを用いてグリッドの非線形性を抽出する。
特徴抽出器として主成分分析を用いた場合よりも,畳み込みオートエンコーダの方が高精度であることを示す。
論文 参考訳(メタデータ) (2023-06-12T08:16:26Z) - LD-GAN: Low-Dimensional Generative Adversarial Network for Spectral
Image Generation with Variance Regularization [72.4394510913927]
ディープラーニング法はスペクトル画像(SI)計算タスクの最先端技術である。
GANは、データ分散から学習およびサンプリングすることで、多様な拡張を可能にする。
この種のデータの高次元性は、GANトレーニングの収束を妨げるため、GANベースのSI生成は困難である。
本稿では, オートエンコーダ訓練における低次元表現分散を制御し, GANで生成されたサンプルの多様性を高めるための統計正則化を提案する。
論文 参考訳(メタデータ) (2023-04-29T00:25:02Z) - O-type Stars Stellar Parameter Estimation Using Recurrent Neural
Networks [0.0]
これまでの研究では、恒星モデルに適合する信頼性の高い方法を確立するために、機械学習とディープラーニングのアルゴリズムのセットを比較した。
本稿では,ニューラルネットワークの観点から,個々の物理パラメータを推定する方法について述べる。
3つの異なるリカレントニューラルネットワークシステムの開発、恒星スペクトルモデルを用いたトレーニングプロセス、9つの異なる観測された恒星スペクトルに対するテスト、および過去の研究における推定との比較について述べる。
論文 参考訳(メタデータ) (2022-10-23T17:18:52Z) - NAF: Neural Attenuation Fields for Sparse-View CBCT Reconstruction [79.13750275141139]
本稿では,スパースビューCBCT再構成のための新規かつ高速な自己教師型ソリューションを提案する。
所望の減衰係数は、3次元空間座標の連続関数として表現され、完全に接続されたディープニューラルネットワークによってパラメータ化される。
ハッシュ符号化を含む学習ベースのエンコーダが採用され、ネットワークが高周波の詳細をキャプチャするのに役立つ。
論文 参考訳(メタデータ) (2022-09-29T04:06:00Z) - Generate Novel Molecules With Target Properties Using Conditional
Generative Models [0.0]
トレーニングセット内の分子と同様の小さな分子を生成する新しいニューラルネットワークを提案する。
我々のネットワークは,分子量,ログP,薬物類似度の定量的評価を指標として,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2020-09-15T18:59:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。