論文の概要: A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra
- arxiv url: http://arxiv.org/abs/2411.05960v1
- Date: Fri, 08 Nov 2024 20:45:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-12 14:07:09.940244
- Title: A method based on Generative Adversarial Networks for disentangling physical and chemical properties of stars in astronomical spectra
- Title(参考訳): 天体スペクトルにおける恒星の物理的・化学的性質の解消のための生成逆ネットワークに基づく一手法
- Authors: Raúl Santoveña, Carlos Dafonte, Minia Manteiga,
- Abstract要約: 本研究では, 天体物理スペクトル解析の文脈において, 敵の訓練を行うエンコーダ・デコーダアーキテクチャを設計した。
深層学習のスキームは、データに含まれる残りの情報のパラメータを潜在空間で解き放つことを目的として使用される。
この方法の有効性を検証するため,APOGEE と Gaia の調査から合成天文学データを用いた。
- 参考スコア(独自算出の注目度): 0.16385815610837165
- License:
- Abstract: Data compression techniques focused on information preservation have become essential in the modern era of big data. In this work, an encoder-decoder architecture has been designed, where adversarial training, a modification of the traditional autoencoder, is used in the context of astrophysical spectral analysis. The goal of this proposal is to obtain an intermediate representation of the astronomical stellar spectra, in which the contribution to the flux of a star due to the most influential physical properties (its surface temperature and gravity) disappears and the variance reflects only the effect of the chemical composition over the spectrum. A scheme of deep learning is used with the aim of unraveling in the latent space the desired parameters of the rest of the information contained in the data. This work proposes a version of adversarial training that makes use of a discriminator per parameter to be disentangled, thus avoiding the exponential combination that occurs in the use of a single discriminator, as a result of the discretization of the values to be untangled. To test the effectiveness of the method, synthetic astronomical data are used from the APOGEE and Gaia surveys. In conjunction with the work presented, we also provide a disentangling framework (GANDALF) available to the community, which allows the replication, visualization, and extension of the method to domains of any nature.
- Abstract(参考訳): 情報保存に焦点をあてたデータ圧縮技術は,ビッグデータの現代において欠かせないものとなっている。
本研究は,天体物理スペクトル解析の文脈において,従来の自己エンコーダの修正である対向訓練を応用したエンコーダ・デコーダアーキテクチャを設計した。
この提案の目的は、最も影響力のある物理的性質(表面温度と重力)による恒星のフラックスへの寄与が消失し、スペクトル上の化学組成の影響のみを反映する天体の恒星スペクトルの中間表現を得ることである。
深層学習のスキームは、潜在空間において、データに含まれる残りの情報のパラメータの所望のパラメータを解き放つことを目的として使用される。
本研究は, パラメータ毎の判別器をアンタングル化する対向訓練のバージョンを提案する。これにより, アンタングルされる値の離散化の結果, 単一判別器の使用時に発生する指数的組み合わせを回避することができる。
この方法の有効性を検証するため,APOGEE と Gaia の調査から合成天文学データを用いた。
提案した作業と合わせて,メソッドの複製,可視化,拡張を自然界のドメインに提供可能な,非接触型フレームワーク(GANDALF)も提供しています。
関連論文リスト
- Targeting the partition function of chemically disordered materials with a generative approach based on inverse variational autoencoders [0.0]
そこで本研究では,生成機械学習を用いて特性評価を行う手法を提案する。
本手法では,エンコーダとデコーダの逆の役割を持つ特定の種類の変分オートエンコーダを用いる。
本稿では, (U, Pu)O2混合酸化物燃料における点欠陥生成エネルギーと濃度の計算によるアプローチについて述べる。
論文 参考訳(メタデータ) (2024-08-27T10:05:37Z) - Datacube segmentation via Deep Spectral Clustering [76.48544221010424]
拡張ビジョン技術は、しばしばその解釈に挑戦する。
データ立方体スペクトルの巨大な次元性は、その統計的解釈において複雑なタスクを生じさせる。
本稿では,符号化空間における教師なしクラスタリング手法の適用の可能性について検討する。
統計的次元削減はアドホック訓練(可変)オートエンコーダで行い、クラスタリング処理は(学習可能な)反復K-Meansクラスタリングアルゴリズムで行う。
論文 参考訳(メタデータ) (2024-01-31T09:31:28Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
APOGEEサーベイのためのANPEモデルをトレーニングし、モックスペクトルと実恒星スペクトルの両方で有効性を示す。
スペクトルデータに固有の計測ノイズ特性を効果的に処理する手法を提案する。
我々はANPEの「モデル動物園」の有用性について論じる。そこでは、モデルは特定の楽器のために訓練され、nbiフレームワークの下で配布される。
論文 参考訳(メタデータ) (2023-12-09T21:30:07Z) - Hodge-Aware Contrastive Learning [101.56637264703058]
単純コンプレックスは、マルチウェイ依存によるデータのモデリングに有効である。
我々は、単純なデータを処理するための対照的な自己教師付き学習手法を開発した。
論文 参考訳(メタデータ) (2023-09-14T00:40:07Z) - Disentanglement via Latent Quantization [60.37109712033694]
本研究では,組織化された潜在空間からの符号化と復号化に向けた帰納的バイアスを構築する。
本稿では,基本データレコーダ (vanilla autoencoder) と潜時再構成 (InfoGAN) 生成モデルの両方に追加することで,このアプローチの広範な適用性を実証する。
論文 参考訳(メタデータ) (2023-05-28T06:30:29Z) - Unsupervised Machine Learning for Exploratory Data Analysis of Exoplanet
Transmission Spectra [68.8204255655161]
我々は、通過する太陽系外惑星のスペクトルデータを解析するための教師なし手法に焦点をあてる。
スペクトルデータには、適切な低次元表現を要求する高い相関関係があることが示される。
主成分に基づく興味深い構造、すなわち、異なる化学状態に対応する明確に定義された分岐を明らかにする。
論文 参考訳(メタデータ) (2022-01-07T22:26:33Z) - Analytical Modelling of Exoplanet Transit Specroscopy with Dimensional
Analysis and Symbolic Regression [68.8204255655161]
ディープラーニング革命は、そのような分析結果を直接、データに適合するコンピュータアルゴリズムで導き出すための扉を開いた。
我々は、一般的なホットジュピター系外惑星の遷移半径の合成データにおける記号回帰の利用をうまく実証した。
前処理のステップとして,変数の無次元な組み合わせを特定するために次元解析を用いる。
論文 参考訳(メタデータ) (2021-12-22T00:52:56Z) - Frequency Spectrum Augmentation Consistency for Domain Adaptive Object
Detection [107.52026281057343]
周波数スペクトル拡張整合(FSAC)フレームワークを4種類の低周波フィルタで構成する。
最初の段階では、オリジナルおよび拡張されたソースデータを全て利用して、オブジェクト検出器を訓練する。
第2段階では、予測一貫性のための自己学習を行うために、擬似ラベル付き拡張現実とターゲットデータを採用する。
論文 参考訳(メタデータ) (2021-12-16T04:07:01Z) - Robust Feature Disentanglement in Imaging Data via Joint Invariant
Variational Autoencoders: from Cards to Atoms [0.0]
関節回転(および翻訳)不変変分オートエンコーダ(j-trVAE)を導入する。
この方法の性能は、いくつかの合成データセットで検証され、電子および走査プローブ顕微鏡の高分解能イメージングデータに拡張されます。
強誘電体材料と量子系の既知の物理学に直接関連する潜在空間の挙動を示す。
論文 参考訳(メタデータ) (2021-04-20T18:01:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。