論文の概要: Generating visual explanations from deep networks using implicit neural representations
- arxiv url: http://arxiv.org/abs/2501.11784v1
- Date: Mon, 20 Jan 2025 23:17:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:22:26.949757
- Title: Generating visual explanations from deep networks using implicit neural representations
- Title(参考訳): 暗黙的神経表現を用いた深層ネットワークからの視覚的説明の生成
- Authors: Michal Byra, Henrik Skibbe,
- Abstract要約: 本研究では、暗黙的神経表現(INR)が視覚的説明を生成するための良い枠組みであることを示す。
同じ画像に対して複数の重複しない属性マスクを生成するために、反復INRベースの手法を提案する。
- 参考スコア(独自算出の注目度): 0.6056822594090163
- License:
- Abstract: Explaining deep learning models in a way that humans can easily understand is essential for responsible artificial intelligence applications. Attribution methods constitute an important area of explainable deep learning. The attribution problem involves finding parts of the network's input that are the most responsible for the model's output. In this work, we demonstrate that implicit neural representations (INRs) constitute a good framework for generating visual explanations. Firstly, we utilize coordinate-based implicit networks to reformulate and extend the extremal perturbations technique and generate attribution masks. Experimental results confirm the usefulness of our method. For instance, by proper conditioning of the implicit network, we obtain attribution masks that are well-behaved with respect to the imposed area constraints. Secondly, we present an iterative INR-based method that can be used to generate multiple non-overlapping attribution masks for the same image. We depict that a deep learning model may associate the image label with both the appearance of the object of interest as well as with areas and textures usually accompanying the object. Our study demonstrates that implicit networks are well-suited for the generation of attribution masks and can provide interesting insights about the performance of deep learning models.
- Abstract(参考訳): 人間が容易に理解できる方法でディープラーニングモデルを記述することは、人工知能アプリケーションに責任を負う上で不可欠である。
属性法は、説明可能な深層学習の重要な領域である。
帰属問題は、モデルの出力に最も責任を負うネットワークの入力の一部を見つけることである。
本研究では、暗黙的神経表現(INR)が視覚的説明を生成するための良い枠組みであることを示す。
まず,座標に基づく暗黙ネットワークを用いて極端摂動法を再構成・拡張し,帰属マスクを生成する。
実験の結果,本手法の有用性が確認された。
例えば、暗黙のネットワークを適切に条件付けすることで、課された領域の制約に対してよく理解されている帰属マスクが得られる。
第二に、同一画像に対して複数の重複しない帰属マスクを生成するために、反復INRベースの手法を提案する。
深層学習モデルは、画像ラベルを興味の対象の外観と、通常その対象に付随する領域やテクスチャの両方に関連付けることができる。
本研究は,暗黙のネットワークが帰属マスクの生成に適していることを示し,ディープラーニングモデルの性能に関する興味深い知見を提供する。
関連論文リスト
- Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Improving Masked Autoencoders by Learning Where to Mask [65.89510231743692]
マスケ画像モデリングは視覚データに対する有望な自己教師型学習手法である。
本稿では,Gumbel-Softmax を用いて,対向学習マスク生成装置とマスク誘導画像モデリングプロセスとを相互接続するフレームワーク AutoMAE を提案する。
実験の結果,AutoMAEは,標準の自己監督型ベンチマークや下流タスクに対して,効果的な事前学習モデルを提供することがわかった。
論文 参考訳(メタデータ) (2023-03-12T05:28:55Z) - Dynamic Inference with Neural Interpreters [72.90231306252007]
本稿では,モジュールシステムとしての自己アテンションネットワークにおける推論を分解するアーキテクチャであるNeural Interpretersを提案する。
モデルへの入力は、エンドツーエンドの学習方法で一連の関数を通してルーティングされる。
ニューラル・インタープリタは、より少ないパラメータを用いて視覚変換器と同等に動作し、サンプル効率で新しいタスクに転送可能であることを示す。
論文 参考訳(メタデータ) (2021-10-12T23:22:45Z) - Deriving Explanation of Deep Visual Saliency Models [6.808418311272862]
我々は,その深部ニューラルネットワークに基づくサリエンシモデルから説明可能なサリエンシモデルを導出する手法を開発した。
我々は2つの最先端のディープ・サリエンシ・モデル、すなわちUNISALとMSI-Netを解釈として検討する。
我々はまた、サリエンシ予測のためのクロスコンカレントマルチスケール残差ブロックベースネットワーク(CMRNet)という独自のディープサリエンシモデルを構築した。
論文 参考訳(メタデータ) (2021-09-08T12:22:32Z) - Expressive Power and Loss Surfaces of Deep Learning Models [0.0]
本稿では,ディープラーニングモデルの動作に関する解説チュートリアルとして機能する。
2つ目の目標は、ディープラーニングモデルの表現力に関する現在の結果を、新しい洞察と結果で補完することである。
論文 参考訳(メタデータ) (2021-08-08T06:28:09Z) - Leveraging Sparse Linear Layers for Debuggable Deep Networks [86.94586860037049]
学習した深い特徴表現に疎い線形モデルを適用することで、よりデバッグ可能なニューラルネットワークを実現する方法を示す。
その結果、スパースな説明は、スプリアス相関を特定し、誤分類を説明し、視覚および言語タスクにおけるモデルバイアスを診断するのに役立ちます。
論文 参考訳(メタデータ) (2021-05-11T08:15:25Z) - Counterfactual Generative Networks [59.080843365828756]
画像生成過程を直接監督せずに訓練する独立した因果機構に分解することを提案する。
適切な誘導バイアスを活用することによって、これらのメカニズムは物体の形状、物体の質感、背景を解き放つ。
その結果, 偽画像は, 元の分類タスクにおける性能の低下を伴い, 分散性が向上することが示された。
論文 参考訳(メタデータ) (2021-01-15T10:23:12Z) - Understanding the Role of Individual Units in a Deep Neural Network [85.23117441162772]
本稿では,画像分類と画像生成ネットワーク内の隠れ単位を系統的に同定する分析フレームワークを提案する。
まず、シーン分類に基づいて訓練された畳み込みニューラルネットワーク(CNN)を分析し、多様なオブジェクト概念にマッチするユニットを発見する。
第2に、シーンを生成するために訓練されたGANモデルについて、同様の分析手法を用いて分析する。
論文 参考訳(メタデータ) (2020-09-10T17:59:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。