Evaluating multiple models using labeled and unlabeled data
- URL: http://arxiv.org/abs/2501.11866v2
- Date: Wed, 22 Jan 2025 16:44:43 GMT
- Title: Evaluating multiple models using labeled and unlabeled data
- Authors: Divya Shanmugam, Shuvom Sadhuka, Manish Raghavan, John Guttag, Bonnie Berger, Emma Pierson,
- Abstract summary: Semi-Supervised Model Evaluation (SSME) is a method that uses both labeled and unlabeled data to evaluate machine learning classifiers.
We present experiments in four domains where obtaining large labeled datasets is often impractical: (1) healthcare, (2) content moderation, (3) molecular property prediction, and (4) image annotation.
Our results demonstrate that SSME estimates performance more accurately than do competing methods, reducing error by 5.1x relative to using labeled data alone and 2.4x relative to the next best competing method.
- Score: 8.174722982389259
- License:
- Abstract: It remains difficult to evaluate machine learning classifiers in the absence of a large, labeled dataset. While labeled data can be prohibitively expensive or impossible to obtain, unlabeled data is plentiful. Here, we introduce Semi-Supervised Model Evaluation (SSME), a method that uses both labeled and unlabeled data to evaluate machine learning classifiers. SSME is the first evaluation method to take advantage of the fact that: (i) there are frequently multiple classifiers for the same task, (ii) continuous classifier scores are often available for all classes, and (iii) unlabeled data is often far more plentiful than labeled data. The key idea is to use a semi-supervised mixture model to estimate the joint distribution of ground truth labels and classifier predictions. We can then use this model to estimate any metric that is a function of classifier scores and ground truth labels (e.g., accuracy or expected calibration error). We present experiments in four domains where obtaining large labeled datasets is often impractical: (1) healthcare, (2) content moderation, (3) molecular property prediction, and (4) image annotation. Our results demonstrate that SSME estimates performance more accurately than do competing methods, reducing error by 5.1x relative to using labeled data alone and 2.4x relative to the next best competing method. SSME also improves accuracy when evaluating performance across subsets of the test distribution (e.g., specific demographic subgroups) and when evaluating the performance of language models.
Related papers
- Semi-Supervised Learning with Multiple Imputations on Non-Random Missing
Labels [0.0]
Semi-Supervised Learning (SSL) is implemented when algorithms are trained on both labeled and unlabeled data.
This paper proposes two new methods of combining multiple imputation models to achieve higher accuracy and less bias.
arXiv Detail & Related papers (2023-08-15T04:09:53Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Learned Label Aggregation for Weak Supervision [8.819582879892762]
We propose a data programming approach that aggregates weak supervision signals to generate labeled data easily.
The quality of the generated labels depends on a label aggregation model that aggregates all noisy labels from all LFs to infer the ground-truth labels.
We show the model can be trained using synthetically generated data and design an effective architecture for the model.
arXiv Detail & Related papers (2022-07-27T14:36:35Z) - Learning from Multiple Unlabeled Datasets with Partial Risk
Regularization [80.54710259664698]
In this paper, we aim to learn an accurate classifier without any class labels.
We first derive an unbiased estimator of the classification risk that can be estimated from the given unlabeled sets.
We then find that the classifier obtained as such tends to cause overfitting as its empirical risks go negative during training.
Experiments demonstrate that our method effectively mitigates overfitting and outperforms state-of-the-art methods for learning from multiple unlabeled sets.
arXiv Detail & Related papers (2022-07-04T16:22:44Z) - Multi-label Classification with Partial Annotations using Class-aware
Selective Loss [14.3159150577502]
Large-scale multi-label classification datasets are commonly partially annotated.
We analyze the partial labeling problem, then propose a solution based on two key ideas.
With our novel approach, we achieve state-of-the-art results on OpenImages dataset.
arXiv Detail & Related papers (2021-10-21T08:10:55Z) - Self-Trained One-class Classification for Unsupervised Anomaly Detection [56.35424872736276]
Anomaly detection (AD) has various applications across domains, from manufacturing to healthcare.
In this work, we focus on unsupervised AD problems whose entire training data are unlabeled and may contain both normal and anomalous samples.
To tackle this problem, we build a robust one-class classification framework via data refinement.
We show that our method outperforms state-of-the-art one-class classification method by 6.3 AUC and 12.5 average precision.
arXiv Detail & Related papers (2021-06-11T01:36:08Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
Neural networks trained on real-world datasets with long-tailed label distributions are biased towards frequent classes and perform poorly on infrequent classes.
We propose a method, Partial Label Masking (PLM), which utilizes this ratio during training.
Our method achieves strong performance when compared to existing methods on both multi-label (MultiMNIST and MSCOCO) and single-label (imbalanced CIFAR-10 and CIFAR-100) image classification datasets.
arXiv Detail & Related papers (2021-05-22T18:07:56Z) - Predicting Classification Accuracy When Adding New Unobserved Classes [8.325327265120283]
We study how a classifier's performance can be used to extrapolate its expected accuracy on a larger, unobserved set of classes.
We formulate a robust neural-network-based algorithm, "CleaneX", which learns to estimate the accuracy of such classifiers on arbitrarily large sets of classes.
arXiv Detail & Related papers (2020-10-28T14:37:25Z) - Analysis of label noise in graph-based semi-supervised learning [2.4366811507669124]
In machine learning, one must acquire labels to help supervise a model that will be able to generalize to unseen data.
It is often the case that most of our data is unlabeled.
Semi-supervised learning (SSL) alleviates that by making strong assumptions about the relation between the labels and the input data distribution.
arXiv Detail & Related papers (2020-09-27T22:13:20Z) - Learning with Out-of-Distribution Data for Audio Classification [60.48251022280506]
We show that detecting and relabelling certain OOD instances, rather than discarding them, can have a positive effect on learning.
The proposed method is shown to improve the performance of convolutional neural networks by a significant margin.
arXiv Detail & Related papers (2020-02-11T21:08:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.