FNIN: A Fourier Neural Operator-based Numerical Integration Network for Surface-form-gradients
- URL: http://arxiv.org/abs/2501.11876v1
- Date: Tue, 21 Jan 2025 04:11:04 GMT
- Title: FNIN: A Fourier Neural Operator-based Numerical Integration Network for Surface-form-gradients
- Authors: Jiaqi Leng, Yakun Ju, Yuanxu Duan, Jiangnan Zhang, Qingxuan Lv, Zuxuan Wu, Hao Fan,
- Abstract summary: Surface-from-gradients (SfG) aims to recover a three-dimensional (3D) surface from its gradients.
Traditional methods encounter challenges in achieving high accuracy and handling high-resolution inputs.
We propose a Fourier neural operator-based Numerical Integration Network (FNIN) within a two-stage optimization framework.
- Score: 31.570033378168574
- License:
- Abstract: Surface-from-gradients (SfG) aims to recover a three-dimensional (3D) surface from its gradients. Traditional methods encounter significant challenges in achieving high accuracy and handling high-resolution inputs, particularly facing the complex nature of discontinuities and the inefficiencies associated with large-scale linear solvers. Although recent advances in deep learning, such as photometric stereo, have enhanced normal estimation accuracy, they do not fully address the intricacies of gradient-based surface reconstruction. To overcome these limitations, we propose a Fourier neural operator-based Numerical Integration Network (FNIN) within a two-stage optimization framework. In the first stage, our approach employs an iterative architecture for numerical integration, harnessing an advanced Fourier neural operator to approximate the solution operator in Fourier space. Additionally, a self-learning attention mechanism is incorporated to effectively detect and handle discontinuities. In the second stage, we refine the surface reconstruction by formulating a weighted least squares problem, addressing the identified discontinuities rationally. Extensive experiments demonstrate that our method achieves significant improvements in both accuracy and efficiency compared to current state-of-the-art solvers. This is particularly evident in handling high-resolution images with complex data, achieving errors of fewer than 0.1 mm on tested objects.
Related papers
- Physics-Informed Latent Neural Operator for Real-time Predictions of Complex Physical Systems [0.0]
Deep operator network (DeepONet) has shown great promise as a surrogate model for systems governed by partial differential equations (PDEs)
This work introduces PI-Latent-NO, a physics-informed latent operator learning framework that overcomes limitations.
arXiv Detail & Related papers (2025-01-14T20:38:30Z) - 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - DM3D: Distortion-Minimized Weight Pruning for Lossless 3D Object Detection [42.07920565812081]
We propose a novel post-training weight pruning scheme for 3D object detection.
It determines redundant parameters in the pretrained model that lead to minimal distortion in both locality and confidence.
This framework aims to minimize detection distortion of network output to maximally maintain detection precision.
arXiv Detail & Related papers (2024-07-02T09:33:32Z) - From Fourier to Neural ODEs: Flow Matching for Modeling Complex Systems [20.006163951844357]
We propose a simulation-free framework for training neural ordinary differential equations (NODEs)
We employ the Fourier analysis to estimate temporal and potential high-order spatial gradients from noisy observational data.
Our approach outperforms state-of-the-art methods in terms of training time, dynamics prediction, and robustness.
arXiv Detail & Related papers (2024-05-19T13:15:23Z) - Neural Poisson Surface Reconstruction: Resolution-Agnostic Shape
Reconstruction from Point Clouds [53.02191521770926]
We introduce Neural Poisson Surface Reconstruction (nPSR), an architecture for shape reconstruction that addresses the challenge of recovering 3D shapes from points.
nPSR exhibits two main advantages: First, it enables efficient training on low-resolution data while achieving comparable performance at high-resolution evaluation.
Overall, the neural Poisson surface reconstruction not only improves upon the limitations of classical deep neural networks in shape reconstruction but also achieves superior results in terms of reconstruction quality, running time, and resolution agnosticism.
arXiv Detail & Related papers (2023-08-03T13:56:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - RecFNO: a resolution-invariant flow and heat field reconstruction method
from sparse observations via Fourier neural operator [8.986743262828009]
We propose an end-to-end physical field reconstruction method with both excellent performance and mesh transferability named RecFNO.
The proposed method aims to learn the mapping from sparse observations to flow and heat field in infinite-dimensional space.
The experiments conducted on fluid mechanics and thermology problems show that the proposed method outperforms existing POD-based and CNN-based methods in most cases.
arXiv Detail & Related papers (2023-02-20T07:20:22Z) - Transform Once: Efficient Operator Learning in Frequency Domain [69.74509540521397]
We study deep neural networks designed to harness the structure in frequency domain for efficient learning of long-range correlations in space or time.
This work introduces a blueprint for frequency domain learning through a single transform: transform once (T1)
arXiv Detail & Related papers (2022-11-26T01:56:05Z) - OReX: Object Reconstruction from Planar Cross-sections Using Neural
Fields [10.862993171454685]
OReX is a method for 3D shape reconstruction from slices alone, featuring a Neural Field gradients as the prior.
A modest neural network is trained on the input planes to return an inside/outside estimate for a given 3D coordinate, yielding a powerful prior that induces smoothness and self-similarities.
We offer an iterative estimation architecture and a hierarchical input sampling scheme that encourage coarse-to-fine training, allowing the training process to focus on high frequencies at later stages.
arXiv Detail & Related papers (2022-11-23T11:44:35Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
We propose a novel HSISR method that uses Transformer instead of CNN to learn the prior of HSIs.
Specifically, we first use the gradient algorithm to solve the HSISR model, and then use an unfolding network to simulate the iterative solution processes.
arXiv Detail & Related papers (2021-11-27T15:38:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.