論文の概要: EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning
- arxiv url: http://arxiv.org/abs/2303.12341v2
- Date: Mon, 19 Aug 2024 06:17:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-21 04:48:49.045711
- Title: EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning
- Title(参考訳): EasyDGL: 継続的動的グラフ学習のためのエンコード、トレーニング、解釈
- Authors: Chao Chen, Haoyu Geng, Nianzu Yang, Xiaokang Yang, Junchi Yan,
- Abstract要約: 本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
- 参考スコア(独自算出の注目度): 92.71579608528907
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic graphs arise in various real-world applications, and it is often welcomed to model the dynamics directly in continuous time domain for its flexibility. This paper aims to design an easy-to-use pipeline (termed as EasyDGL which is also due to its implementation by DGL toolkit) composed of three key modules with both strong fitting ability and interpretability. Specifically the proposed pipeline which involves encoding, training and interpreting: i) a temporal point process (TPP) modulated attention architecture to endow the continuous-time resolution with the coupled spatiotemporal dynamics of the observed graph with edge-addition events; ii) a principled loss composed of task-agnostic TPP posterior maximization based on observed events on the graph, and a task-aware loss with a masking strategy over dynamic graph, where the covered tasks include dynamic link prediction, dynamic node classification and node traffic forecasting; iii) interpretation of the model outputs (e.g., representations and predictions) with scalable perturbation-based quantitative analysis in the graph Fourier domain, which could more comprehensively reflect the behavior of the learned model. Extensive experimental results on public benchmarks show the superior performance of our EasyDGL for time-conditioned predictive tasks, and in particular demonstrate that EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
- Abstract(参考訳): 動的グラフは様々な現実世界のアプリケーションで発生し、その柔軟性のために連続時間領域で直接動的をモデル化することがしばしば歓迎される。
本研究の目的は,DGL ツールキットによる実装による EasyDGL と呼ばれる使い勝手の良いパイプラインを設計することである。
具体的には、エンコーディング、トレーニング、解釈を含む提案されたパイプラインです。
一 エッジ付加イベントを伴う観測グラフの時空間的ダイナミックスを組み合わした連続時間分解を実現するための時間的点過程(TPP)
二 グラフ上の観測事象に基づくタスク非依存のTPP後最大化と、動的リンク予測、動的ノード分類、ノードトラフィック予測を含む動的グラフ上のマスキング戦略によるタスク対応損失とからなる原則的損失
三 グラフフーリエ領域において、スケーラブルな摂動に基づく定量的解析を行い、学習モデルの振舞いをより包括的に反映できるモデル出力(例えば、表現、予測)の解釈。
特に、モデルが進化するグラフデータから学習する周波数コンテンツの予測力を効果的に定量化できることを実証している。
関連論文リスト
- Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Node-Time Conditional Prompt Learning In Dynamic Graphs [14.62182210205324]
DYGPROMPTは動的グラフモデリングのための新しい事前学習および迅速な学習フレームワークである。
我々はノードと時間の特徴が相互に特徴付けることを認識し、下流タスクにおけるノード時間パターンの進化をモデル化するための2つの条件ネットを提案する。
論文 参考訳(メタデータ) (2024-05-22T19:10:24Z) - Temporal Graph ODEs for Irregularly-Sampled Time Series [32.68671699403658]
時間的グラフ正規微分方程式(TG-ODE)フレームワークを導入し,時間的および空間的ダイナミクスをグラフストリームから学習する。
提案手法をいくつかのグラフベンチマークで実証的に検証し、不規則なグラフストリームタスクにおいてTG-ODEが最先端の性能を達成可能であることを示す。
論文 参考訳(メタデータ) (2024-04-30T12:43:11Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Backbone-based Dynamic Graph Spatio-Temporal Network for Epidemic
Forecasting [3.382729969842304]
正確な流行予測は伝染病の予防に重要な課題である。
多くのディープラーニングベースのモデルは、空間情報を構築する際に静的グラフや動的グラフにのみフォーカスする。
バックボーンに基づく動的グラフ時空間ネットワーク(BDGSTN)という新しいモデルを提案する。
論文 参考訳(メタデータ) (2023-12-01T10:34:03Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
本稿では,動的グラフ表現学習のための新しいフレームワークであるRecurrent Structure-Reinforced Graph Transformer (RSGT)を紹介する。
RSGTは、繰り返し学習パラダイムを通じて、グラフトポロジと進化力学の両方をコードする時間ノード表現をキャプチャする。
離散動的グラフ表現学習におけるRSGTの優れた性能を示し、動的リンク予測タスクにおける既存の手法よりも一貫して優れていることを示す。
論文 参考訳(メタデータ) (2023-04-20T04:12:50Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
本稿では,学習損失による時間依存性を選択的に表現し,計算の並列性を改善するための効率的な動的グラフ lEarning (EDGE) を提案する。
EDGEは、数百万のノードと数億の時間的イベントを持つ動的グラフにスケールでき、新しい最先端(SOTA)パフォーマンスを実現することができる。
論文 参考訳(メタデータ) (2021-12-14T22:24:53Z) - Dynamic Graph Representation Learning via Graph Transformer Networks [41.570839291138114]
動的グラフ変換器 (DGT) を用いた動的グラフ学習手法を提案する。
DGTは、グラフトポロジを効果的に学習し、暗黙のリンクをキャプチャするための時空間符号化を持つ。
DGTはいくつかの最先端のベースラインと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-19T21:44:23Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。