論文の概要: Med-R$^2$: Crafting Trustworthy LLM Physicians through Retrieval and Reasoning of Evidence-Based Medicine
- arxiv url: http://arxiv.org/abs/2501.11885v2
- Date: Wed, 22 Jan 2025 13:32:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:39.667484
- Title: Med-R$^2$: Crafting Trustworthy LLM Physicians through Retrieval and Reasoning of Evidence-Based Medicine
- Title(参考訳): Med-R$^2$:Evidence-based Medicine の検索と推論による信頼できる LLM 物理学者の育成
- Authors: Keer Lu, Zheng Liang, Da Pan, Shusen Zhang, Xin Wu, Weipeng Chen, Zenan Zhou, Guosheng Dong, Bin Cui, Wentao Zhang,
- Abstract要約: 我々は,Evidence-Based Medicine(EBM)プロセスに準拠したLarge Language Models(LLM)の新しいフレームワークであるMed-R2を紹介する。
実験の結果, Med-R2はバニラRAG法よりも14.87%改善し, 微調整法に比べて3.59%向上した。
- 参考スコア(独自算出の注目度): 39.80703772263271
- License:
- Abstract: In recent years, Large Language Models (LLMs) have exhibited remarkable capabilities in clinical scenarios. However, despite their potential, existing works face challenges when applying LLMs to medical settings. Strategies relying on training with medical datasets are highly cost-intensive and may suffer from outdated training data. Leveraging external knowledge bases is a suitable alternative, yet it faces obstacles such as limited retrieval precision and poor effectiveness in answer extraction. These issues collectively prevent LLMs from demonstrating the expected level of proficiency in mastering medical expertise. To address these challenges, we introduce Med-R^2, a novel LLM physician framework that adheres to the Evidence-Based Medicine (EBM) process, efficiently integrating retrieval mechanisms as well as the selection and reasoning processes of evidence, thereby enhancing the problem-solving capabilities of LLMs in healthcare scenarios and fostering a trustworthy LLM physician. Our comprehensive experiments indicate that Med-R^2 achieves a 14.87\% improvement over vanilla RAG methods and even a 3.59\% enhancement compared to fine-tuning strategies, without incurring additional training costs.
- Abstract(参考訳): 近年,Large Language Models (LLMs) は臨床シナリオにおいて顕著な能力を発揮している。
しかし、その可能性にも拘わらず、既存の研究はLLMを医療現場に適用する際の課題に直面している。
医療データセットによるトレーニングに依存する戦略は非常にコストがかかり、時代遅れのトレーニングデータに悩まされる可能性がある。
外部知識ベースを活用することは適切な方法であるが、検索精度の制限や回答抽出の有効性の低下といった障害に直面している。
これらの問題は、LSMが医療専門知識を習得する能力の期待レベルを示すのを全体として妨げている。
これらの課題に対処するため、我々は、EBM(Evidence-Based Medicine)プロセスに準拠した新しいLLM医師フレームワークであるMed-R^2を導入し、検索機構と証拠の選択と推論プロセスを効率的に統合し、医療シナリオにおけるLLMの問題解決能力を高め、信頼できるLLM医師を育成する。
Med-R^2 はバニラ RAG 法よりも 14.87 % 向上し,さらに微調整戦略に比べて3.59 % 向上した。
関連論文リスト
- SeRTS: Self-Rewarding Tree Search for Biomedical Retrieval-Augmented Generation [50.26966969163348]
大規模言語モデル(LLM)は,検索増強世代(RAG)の進展に伴い,生物医学領域において大きな可能性を示した。
既存の検索強化アプローチは、様々なクエリやドキュメント、特に医療知識クエリに対処する上で、課題に直面している。
モンテカルロ木探索(MCTS)と自己回帰パラダイムに基づく自己回帰木探索(SeRTS)を提案する。
論文 参考訳(メタデータ) (2024-06-17T06:48:31Z) - A Survey on Large Language Models from General Purpose to Medical Applications: Datasets, Methodologies, and Evaluations [5.265452667976959]
本調査は,オープンソース汎用LSMをベースとした医療用LSMのトレーニング方法を体系的にまとめたものである。
a) トレーニングコーパスの取得方法、カスタマイズされた医療トレーニングセットの構築方法、(b) 適切なトレーニングパラダイムの選択方法、(d) 既存の課題と有望な研究方向性をカバーしている。
論文 参考訳(メタデータ) (2024-06-14T02:42:20Z) - JMLR: Joint Medical LLM and Retrieval Training for Enhancing Reasoning and Professional Question Answering Capability [8.476124605775976]
LLM(Large Language Models)は、医学知識の獲得と質問応答において顕著な可能性を実証している。
LLMは、ドメイン固有の事前訓練であっても、幻覚を起こし、事実的に誤った結果をもたらす可能性がある。
JMLR(LLMと情報検索)を微調整期間中に導入し,幻覚に対処する。
論文 参考訳(メタデータ) (2024-02-27T21:01:41Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - ChiMed-GPT: A Chinese Medical Large Language Model with Full Training Regime and Better Alignment to Human Preferences [51.66185471742271]
我々は中国医学領域向けに明示的に設計されたベンチマークLSMであるChiMed-GPTを提案する。
ChiMed-GPTは、事前訓練、SFT、RLHFを含む総合的な訓練体制を実施。
我々は,ChiMed-GPTを患者識別に関する態度尺度の実行を促すことによって,潜在的なバイアスを分析した。
論文 参考訳(メタデータ) (2023-11-10T12:25:32Z) - A Survey of Large Language Models in Medicine: Progress, Application, and Challenge [85.09998659355038]
大規模言語モデル (LLM) は、人間の言語を理解し、生成する能力のために大きな注目を集めている。
本総説は,医学におけるLSMの開発と展開について概説することを目的としている。
論文 参考訳(メタデータ) (2023-11-09T02:55:58Z) - MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering [45.84961106102445]
大規模言語モデル(LLM)は、医療質問応答(QA)のようなドメイン固有のタスクでよく機能しないことが多い。
本稿では,医学的事実を外部知識ベースから抽出し,LLMのクエリプロンプトに注入するための総合的検索手法を提案する。
Vicuna-7Bは44.46%から48.54%の精度向上を示した。
論文 参考訳(メタデータ) (2023-09-27T21:26:03Z) - Aligning Large Language Models for Clinical Tasks [0.0]
大規模言語モデル(LLM)は目覚ましい適応性を示しており、明示的に訓練されていないタスクに精通する能力を示している。
我々は「Expand-guess-refine」として知られる医療質問応答のためのアライメント戦略を提案する。
この手法の予備的な分析により、USMLEデータセットから得られた質問のサブセットで70.63%のスコアが得られた。
論文 参考訳(メタデータ) (2023-09-06T10:20:06Z) - An Automatic Evaluation Framework for Multi-turn Medical Consultations
Capabilities of Large Language Models [22.409334091186995]
大型言語モデル(LLM)はしばしば幻覚に悩まされ、過度に自信があるが誤った判断を下す。
本稿では,マルチターンコンサルテーションにおける仮想医師としてのLCMの実用能力を評価するための自動評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-05T09:24:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。