論文の概要: Enhancing Adversarial Transferability via Component-Wise Transformation
- arxiv url: http://arxiv.org/abs/2501.11901v2
- Date: Sun, 30 Mar 2025 01:07:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-01 15:20:31.706727
- Title: Enhancing Adversarial Transferability via Component-Wise Transformation
- Title(参考訳): コンポーネントワイズ変換による逆変換性の向上
- Authors: Hangyu Liu, Bo Peng, Can Cui, Pengxiang Ding, Donglin Wang,
- Abstract要約: 本稿では,CWT(Component-Wise Transformation)と呼ばれる新しい入力ベースの攻撃手法を提案する。
CWTは個々の画像ブロックに選択的回転を適用し、変換された各画像が異なるターゲット領域をハイライトすることを保証する。
標準のImageNetデータセットの実験では、CWTは攻撃成功率と安定性の両方において、最先端の手法を一貫して上回っている。
- 参考スコア(独自算出の注目度): 28.209214055953844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are highly vulnerable to adversarial examples, which pose significant challenges in security-sensitive applications. Among various adversarial attack strategies, input transformation-based attacks have demonstrated remarkable effectiveness in enhancing adversarial transferability. However, existing methods still perform poorly across different architectures, even though they have achieved promising results within the same architecture. This limitation arises because, while models of the same architecture may focus on different regions of the object, the variation is even more pronounced across different architectures. Unfortunately, current approaches fail to effectively guide models to attend to these diverse regions. To address this issue, this paper proposes a novel input transformation-based attack method, termed Component-Wise Transformation (CWT). CWT applies interpolation and selective rotation to individual image blocks, ensuring that each transformed image highlights different target regions, thereby improving the transferability of adversarial examples. Extensive experiments on the standard ImageNet dataset show that CWT consistently outperforms state-of-the-art methods in both attack success rates and stability across CNN- and Transformer-based models.
- Abstract(参考訳): ディープニューラルネットワーク(DNN)は、敵の例に対して非常に脆弱であり、セキュリティに敏感なアプリケーションにおいて大きな課題を生じさせる。
様々な対向攻撃戦略の中で、入力変換に基づく攻撃は、対向移動性を高めるのに顕著な効果を示した。
しかし、既存のメソッドは、同じアーキテクチャ内で有望な結果を得たにもかかわらず、異なるアーキテクチャではまだパフォーマンスが良くない。
この制限は、同じアーキテクチャのモデルがオブジェクトの異なる領域に焦点を当てているのに対して、そのバリエーションは異なるアーキテクチャでさらに顕著であるから生じます。
残念なことに、現在のアプローチでは、これらの多様な領域へのモデルを効果的に導くことができません。
そこで本研究では,CWT(Component-Wise Transformation)と呼ばれる新しい入力変換に基づく攻撃手法を提案する。
CWTは、個々の画像ブロックに補間と選択的回転を適用し、変換された各画像が異なるターゲット領域をハイライトすることを保証する。
標準のImageNetデータセットの大規模な実験によると、CWTはCNNとTransformerベースのモデルの両方で、攻撃の成功率と安定性の両方において、最先端の手法を一貫して上回っている。
関連論文リスト
- Boosting the Local Invariance for Better Adversarial Transferability [4.75067406339309]
トランスファーベースの攻撃は、現実世界のアプリケーションに重大な脅威をもたらす。
LI-Boost (Local Invariance Boosting approach) と呼ばれる一般対向転送可能性向上手法を提案する。
標準のImageNetデータセットの実験では、LI-Boostがさまざまなタイプの転送ベースの攻撃を著しく強化できることが示された。
論文 参考訳(メタデータ) (2025-03-08T09:44:45Z) - Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation [15.362394334872077]
逆知識蒸留(Inverse Knowledge Distillation, IKD)は, 対向移動性を効果的に向上するように設計されている。
IKDは勾配に基づく攻撃手法を統合し、攻撃勾配の多様性を促進し、特定のモデルアーキテクチャへの過度な適合を緩和する。
ImageNetデータセットの実験は、我々のアプローチの有効性を検証する。
論文 参考訳(メタデータ) (2025-02-24T09:35:30Z) - Semantic-Aligned Adversarial Evolution Triangle for High-Transferability Vision-Language Attack [51.16384207202798]
視覚言語事前学習モデルは多モーダル逆例(AE)に対して脆弱である
従来のアプローチでは、画像とテキストのペアを拡大して、敵対的なサンプル生成プロセス内での多様性を高めている。
本稿では, 敵の多様性を高めるために, クリーン, ヒストリ, および現在の敵の例からなる敵の進化三角形からのサンプリングを提案する。
論文 参考訳(メタデータ) (2024-11-04T23:07:51Z) - Cross-Modality Attack Boosted by Gradient-Evolutionary Multiform Optimization [4.226449585713182]
クロスモーダル・アタックは、トランスファービリティーへの攻撃に重大な課題をもたらす。
マルチフォームアタック(multiform attack)と呼ばれる,新たなクロスモーダルアタック戦略を提案する。
従来の手法と比較して,マルチフォームアタックの優位性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-09-26T15:52:34Z) - Improving the Transferability of Adversarial Examples by Feature Augmentation [6.600860987969305]
本稿では,計算コストの増大を伴わずに,対向移動性を向上する簡易かつ効果的な機能拡張攻撃法を提案する。
具体的には、攻撃勾配の多様性を増大させるために、モデルの中間特徴にランダムノイズを注入する。
提案手法は,既存の勾配攻撃と組み合わせることで,さらなる性能向上を図ることができる。
論文 参考訳(メタデータ) (2024-07-09T09:41:40Z) - Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
ホワイトボックス設定で生成された逆例は、しばしば異なるモデル間で低い転送可能性を示す。
そこで本研究では,既存の敵攻撃の微妙な変化が攻撃性能に大きく影響することを発見した。
既存の敵攻撃の綿密な研究に基づいて、敵の移動性を高めるためのトリックの袋を提案する。
論文 参考訳(メタデータ) (2024-01-16T17:42:36Z) - Structure Invariant Transformation for better Adversarial
Transferability [9.272426833639615]
構造不変攻撃(Structure Invariant Attack, SIA)と呼ばれる新しい入力変換に基づく攻撃を提案する。
SIAは各画像ブロックにランダムな画像変換を適用し、勾配計算のための多様な画像群を作成する。
標準的なImageNetデータセットの実験では、SIAは既存のSOTA入力変換ベースの攻撃よりもはるかに優れた転送性を示している。
論文 参考訳(メタデータ) (2023-09-26T06:31:32Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
敵対的な例は、ディープニューラルネットワークのアプリケーションに脅威をもたらす。
ディープニューラルネットワークは敵の例に対して脆弱であり、モデルのアプリケーションに脅威を与え、セキュリティ上の懸念を提起する。
我々はSimisal Target(ST)という類似の攻撃手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T14:16:36Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
単一ドメインの一般化は、モデルが単一のソースドメインでトレーニングされたときに未知のドメインに一般化する能力を高めることを目的としている。
トレーニングデータの限られた多様性は、ドメイン不変の特徴の学習を妨げ、結果として一般化性能を損なう。
トレーニングデータの多様性を高めるために,CPerbを提案する。
論文 参考訳(メタデータ) (2023-08-02T03:16:12Z) - Common Knowledge Learning for Generating Transferable Adversarial
Examples [60.1287733223249]
本稿では,代用(ソース)モデルにより敵のサンプルを生成するブラックボックス攻撃の重要タイプに着目した。
既存の手法では、ソースモデルとターゲットモデルが異なるタイプのDNNアーキテクチャのものである場合、不満足な逆転が生じる傾向にある。
本稿では,より優れたネットワーク重みを学習し,敵対的な例を生成するための共通知識学習(CKL)フレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-01T09:07:12Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
ディープニューラルネットワークにおける敵の例の転送可能性は多くのブラックボックス攻撃の欠如である。
我々は、望ましい転送可能性を達成するためにベイズモデルを攻撃することを提唱する。
我々の手法は近年の最先端を大きなマージンで上回る。
論文 参考訳(メタデータ) (2023-02-10T07:08:13Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [80.16624587948368]
本稿では,一般のコンボリューションとアテンション演算子の真の利益を,詳細な研究により同定することを目的とする。
注意や畳み込みのようなこれらの特徴変換モジュールの主な違いは、それらの空間的特徴集約アプローチにある。
様々なSTMが統合されたフレームワークに統合され、包括的な比較分析を行う。
論文 参考訳(メタデータ) (2022-11-10T18:59:43Z) - Enhancing the Self-Universality for Transferable Targeted Attacks [88.6081640779354]
本手法は,高次対角的摂動が標的攻撃に対してより伝達しやすい傾向にあることを示す。
異なる画像上の摂動を最適化する代わりに、異なる領域を最適化して自己ユニバーシティを実現することで、余分なデータを排除することができる。
特徴的類似性欠如により,本手法は,良性画像よりも対向性摂動の特徴が支配的となる。
論文 参考訳(メタデータ) (2022-09-08T11:21:26Z) - Adaptive Image Transformations for Transfer-based Adversarial Attack [73.74904401540743]
適応画像変換学習(AITL)と呼ばれる新しいアーキテクチャを提案する。
精巧に設計した学習者は、入力画像固有の画像変換の最も効果的な組み合わせを適応的に選択する。
本手法は、通常訓練されたモデルと防衛モデルの両方において、各種設定下での攻撃成功率を大幅に向上させる。
論文 参考訳(メタデータ) (2021-11-27T08:15:44Z) - Exploring Transferable and Robust Adversarial Perturbation Generation
from the Perspective of Network Hierarchy [52.153866313879924]
敵の例の移動可能性と堅牢性は、ブラックボックスの敵攻撃の実用的かつ重要な2つの性質である。
伝送可能で頑健な逆生成法(TRAP)を提案する。
我々のTRAPは、ある種の干渉に対して印象的な伝達性と高い堅牢性を実現する。
論文 参考訳(メタデータ) (2021-08-16T11:52:41Z) - Perturbing Across the Feature Hierarchy to Improve Standard and Strict
Blackbox Attack Transferability [100.91186458516941]
我々は、ディープニューラルネットワーク(DNN)画像分類器の領域におけるブラックボックス転送に基づく敵攻撃脅威モデルを検討する。
我々は,多層摂動が可能なフレキシブルアタックフレームワークを設計し,最先端のターゲット転送性能を示す。
提案手法が既存の攻撃戦略より優れている理由を解析し,ブラックボックスモデルに対する限られたクエリが許された場合に,メソッドの拡張を示す。
論文 参考訳(メタデータ) (2020-04-29T16:00:13Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
ディープ畳み込みニューラルネットワーク(DCNN)は敵の例に弱いことが判明した。
転送可能な敵の例は、DCNNの堅牢性を著しく妨げます。
DFANetは畳み込み層で使用されるドロップアウトベースの手法であり,サロゲートモデルの多様性を高めることができる。
クエリなしで4つの商用APIをうまく攻撃できる新しい対向顔ペアを生成します。
論文 参考訳(メタデータ) (2020-04-13T06:44:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。