Enhancing Adversarial Transferability via Component-Wise Transformation
- URL: http://arxiv.org/abs/2501.11901v2
- Date: Sun, 30 Mar 2025 01:07:14 GMT
- Title: Enhancing Adversarial Transferability via Component-Wise Transformation
- Authors: Hangyu Liu, Bo Peng, Can Cui, Pengxiang Ding, Donglin Wang,
- Abstract summary: This paper proposes a novel input-based attack method, termed Component-Wise Transformation (CWT)<n>CWT applies selective rotation to individual image blocks, ensuring that each transformed image highlights different target regions.<n>Experiments on the standard ImageNet dataset show that CWT consistently outperforms state-of-the-art methods in both attack success rates and stability.
- Score: 28.209214055953844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) are highly vulnerable to adversarial examples, which pose significant challenges in security-sensitive applications. Among various adversarial attack strategies, input transformation-based attacks have demonstrated remarkable effectiveness in enhancing adversarial transferability. However, existing methods still perform poorly across different architectures, even though they have achieved promising results within the same architecture. This limitation arises because, while models of the same architecture may focus on different regions of the object, the variation is even more pronounced across different architectures. Unfortunately, current approaches fail to effectively guide models to attend to these diverse regions. To address this issue, this paper proposes a novel input transformation-based attack method, termed Component-Wise Transformation (CWT). CWT applies interpolation and selective rotation to individual image blocks, ensuring that each transformed image highlights different target regions, thereby improving the transferability of adversarial examples. Extensive experiments on the standard ImageNet dataset show that CWT consistently outperforms state-of-the-art methods in both attack success rates and stability across CNN- and Transformer-based models.
Related papers
- Boosting the Local Invariance for Better Adversarial Transferability [4.75067406339309]
Transfer-based attacks pose a significant threat to real-world applications.
We propose a general adversarial transferability boosting technique called Local Invariance Boosting approach (LI-Boost)
Experiments on the standard ImageNet dataset demonstrate that LI-Boost could significantly boost various types of transfer-based attacks.
arXiv Detail & Related papers (2025-03-08T09:44:45Z) - Improving the Transferability of Adversarial Examples by Inverse Knowledge Distillation [15.362394334872077]
Inverse Knowledge Distillation (IKD) is designed to enhance adversarial transferability effectively.
IKD integrates with gradient-based attack methods, promoting diversity in attack gradients and mitigating overfitting to specific model architectures.
Experiments on the ImageNet dataset validate the effectiveness of our approach.
arXiv Detail & Related papers (2025-02-24T09:35:30Z) - Semantic-Aligned Adversarial Evolution Triangle for High-Transferability Vision-Language Attack [51.16384207202798]
Vision-language pre-training models are vulnerable to multimodal adversarial examples (AEs)
Previous approaches augment image-text pairs to enhance diversity within the adversarial example generation process.
We propose sampling from adversarial evolution triangles composed of clean, historical, and current adversarial examples to enhance adversarial diversity.
arXiv Detail & Related papers (2024-11-04T23:07:51Z) - Cross-Modality Attack Boosted by Gradient-Evolutionary Multiform Optimization [4.226449585713182]
Cross-modal adversarial attacks pose significant challenges to attack transferability.
We propose a novel cross-modal adversarial attack strategy, termed multiform attack.
We demonstrate the superiority and robustness of Multiform Attack compared to existing techniques.
arXiv Detail & Related papers (2024-09-26T15:52:34Z) - Improving the Transferability of Adversarial Examples by Feature Augmentation [6.600860987969305]
We propose a simple but effective feature augmentation attack (FAUG) method, which improves adversarial transferability without introducing extra computation costs.
Specifically, we inject the random noise into the intermediate features of the model to enlarge the diversity of the attack gradient.
Our method can be combined with existing gradient attacks to augment their performance further.
arXiv Detail & Related papers (2024-07-09T09:41:40Z) - Bag of Tricks to Boost Adversarial Transferability [5.803095119348021]
adversarial examples generated under the white-box setting often exhibit low transferability across different models.
In this work, we find that several tiny changes in the existing adversarial attacks can significantly affect the attack performance.
Based on careful studies of existing adversarial attacks, we propose a bag of tricks to enhance adversarial transferability.
arXiv Detail & Related papers (2024-01-16T17:42:36Z) - Structure Invariant Transformation for better Adversarial
Transferability [9.272426833639615]
We propose a novel input transformation based attack, called Structure Invariant Attack (SIA)
SIA applies a random image transformation onto each image block to craft a set of diverse images for gradient calculation.
Experiments on the standard ImageNet dataset demonstrate that SIA exhibits much better transferability than the existing SOTA input transformation based attacks.
arXiv Detail & Related papers (2023-09-26T06:31:32Z) - Enhancing Adversarial Attacks: The Similar Target Method [6.293148047652131]
adversarial examples pose a threat to deep neural networks' applications.
Deep neural networks are vulnerable to adversarial examples, posing a threat to the models' applications and raising security concerns.
We propose a similar targeted attack method named Similar Target(ST)
arXiv Detail & Related papers (2023-08-21T14:16:36Z) - A Novel Cross-Perturbation for Single Domain Generalization [54.612933105967606]
Single domain generalization aims to enhance the ability of the model to generalize to unknown domains when trained on a single source domain.
The limited diversity in the training data hampers the learning of domain-invariant features, resulting in compromised generalization performance.
We propose CPerb, a simple yet effective cross-perturbation method to enhance the diversity of the training data.
arXiv Detail & Related papers (2023-08-02T03:16:12Z) - Common Knowledge Learning for Generating Transferable Adversarial
Examples [60.1287733223249]
This paper focuses on an important type of black-box attacks, where the adversary generates adversarial examples by a substitute (source) model.
Existing methods tend to give unsatisfactory adversarial transferability when the source and target models are from different types of DNN architectures.
We propose a common knowledge learning (CKL) framework to learn better network weights to generate adversarial examples.
arXiv Detail & Related papers (2023-07-01T09:07:12Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [80.16624587948368]
This paper aims to identify the real gains of popular convolution and attention operators through a detailed study.
We find that the key difference among these feature transformation modules, such as attention or convolution, lies in their spatial feature aggregation approach.
Various STMs are integrated into this unified framework for comprehensive comparative analysis.
arXiv Detail & Related papers (2022-11-10T18:59:43Z) - Enhancing the Self-Universality for Transferable Targeted Attacks [88.6081640779354]
Our new attack method is proposed based on the observation that highly universal adversarial perturbations tend to be more transferable for targeted attacks.
Instead of optimizing the perturbations on different images, optimizing on different regions to achieve self-universality can get rid of using extra data.
With the feature similarity loss, our method makes the features from adversarial perturbations to be more dominant than that of benign images.
arXiv Detail & Related papers (2022-09-08T11:21:26Z) - Adaptive Image Transformations for Transfer-based Adversarial Attack [73.74904401540743]
We propose a novel architecture, called Adaptive Image Transformation Learner (AITL)
Our elaborately designed learner adaptively selects the most effective combination of image transformations specific to the input image.
Our method significantly improves the attack success rates on both normally trained models and defense models under various settings.
arXiv Detail & Related papers (2021-11-27T08:15:44Z) - Exploring Transferable and Robust Adversarial Perturbation Generation
from the Perspective of Network Hierarchy [52.153866313879924]
The transferability and robustness of adversarial examples are two practical yet important properties for black-box adversarial attacks.
We propose a transferable and robust adversarial generation (TRAP) method.
Our TRAP achieves impressive transferability and high robustness against certain interferences.
arXiv Detail & Related papers (2021-08-16T11:52:41Z) - Perturbing Across the Feature Hierarchy to Improve Standard and Strict
Blackbox Attack Transferability [100.91186458516941]
We consider the blackbox transfer-based targeted adversarial attack threat model in the realm of deep neural network (DNN) image classifiers.
We design a flexible attack framework that allows for multi-layer perturbations and demonstrates state-of-the-art targeted transfer performance.
We analyze why the proposed methods outperform existing attack strategies and show an extension of the method in the case when limited queries to the blackbox model are allowed.
arXiv Detail & Related papers (2020-04-29T16:00:13Z) - Towards Transferable Adversarial Attack against Deep Face Recognition [58.07786010689529]
Deep convolutional neural networks (DCNNs) have been found to be vulnerable to adversarial examples.
transferable adversarial examples can severely hinder the robustness of DCNNs.
We propose DFANet, a dropout-based method used in convolutional layers, which can increase the diversity of surrogate models.
We generate a new set of adversarial face pairs that can successfully attack four commercial APIs without any queries.
arXiv Detail & Related papers (2020-04-13T06:44:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.