TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
- URL: http://arxiv.org/abs/2501.12012v2
- Date: Thu, 06 Feb 2025 16:18:09 GMT
- Title: TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data
- Authors: Paul Tiwald, Ivona Krchova, Andrey Sidorenko, Mariana Vargas Vieyra, Mario Scriminaci, Michael Platzer,
- Abstract summary: We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework to handle mixed-type, multivariate, and sequential datasets.
By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns.
- Score: 0.42881773214459123
- License:
- Abstract: Synthetic data generation for tabular datasets must balance fidelity, efficiency, and versatility to meet the demands of real-world applications. We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework designed to handle mixed-type, multivariate, and sequential datasets. By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns. The framework achieves state-of-the-art synthetic data quality while significantly reducing training and inference times, making it ideal for large-scale datasets with diverse structures. Evaluated across established benchmarks, including realistic datasets with complex relationships, TabularARGN demonstrates its capability to synthesize high-quality data efficiently. By unifying flexibility and performance, this framework paves the way for practical synthetic data generation across industries.
Related papers
- Generating Diverse Synthetic Datasets for Evaluation of Real-life Recommender Systems [0.0]
Synthetic datasets are important for evaluating and testing machine learning models.
We develop a novel framework for generating synthetic datasets that are diverse and statistically coherent.
The framework is available as a free open Python package to facilitate research with minimal friction.
arXiv Detail & Related papers (2024-11-27T09:53:14Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - A Survey on Deep Tabular Learning [0.0]
Tabular data presents unique challenges for deep learning due to its heterogeneous nature and lack of spatial structure.
This survey reviews the evolution of deep learning models for Tabular data, from early fully connected networks (FCNs) to advanced architectures like TabNet, SAINT, TabTranSELU, and MambaNet.
arXiv Detail & Related papers (2024-10-15T20:08:08Z) - Causality for Tabular Data Synthesis: A High-Order Structure Causal Benchmark Framework [18.11940247961923]
In this paper, we introduce high-order structural causal information as natural prior knowledge.
We propose multiple benchmark tasks, high-order metrics, and causal inference tasks as downstream tasks for evaluating the quality of synthetic data.
arXiv Detail & Related papers (2024-06-12T15:12:49Z) - CTSyn: A Foundational Model for Cross Tabular Data Generation [9.568990880984813]
Cross-Table Synthesizer (CTSyn) is a diffusion-based foundational model tailored for tabular data generation.
CTSyn significantly outperforms existing table synthesizers in utility and diversity.
It also uniquely enhances performances of downstream machine learning beyond what is achievable with real data.
arXiv Detail & Related papers (2024-06-07T04:04:21Z) - Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient [52.2669490431145]
PropEn is inspired by'matching', which enables implicit guidance without training a discriminator.
We show that training with a matched dataset approximates the gradient of the property of interest while remaining within the data distribution.
arXiv Detail & Related papers (2024-05-28T11:30:19Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.