GReaTER: Generate Realistic Tabular data after data Enhancement and Reduction
- URL: http://arxiv.org/abs/2503.15564v1
- Date: Wed, 19 Mar 2025 04:16:05 GMT
- Title: GReaTER: Generate Realistic Tabular data after data Enhancement and Reduction
- Authors: Tung Sum Thomas Kwok, Chi-Hua Wang, Guang Cheng,
- Abstract summary: We propose GReaTER to generate realistic Tabular Data.<n> GReaTER includes a data semantic enhancement system and a cross-table connecting method.<n> Experimental results show that GReaTER outperforms the GReaT framework.
- Score: 9.784347635082232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Tabular data synthesis involves not only multi-table synthesis but also generating multi-modal data (e.g., strings and categories), which enables diverse knowledge synthesis. However, separating numerical and categorical data has limited the effectiveness of tabular data generation. The GReaT (Generate Realistic Tabular Data) framework uses Large Language Models (LLMs) to encode entire rows, eliminating the need to partition data types. Despite this, the framework's performance is constrained by two issues: (1) tabular data entries lack sufficient semantic meaning, limiting LLM's ability to leverage pre-trained knowledge for in-context learning, and (2) complex multi-table datasets struggle to establish effective relationships for collaboration. To address these, we propose GReaTER (Generate Realistic Tabular Data after data Enhancement and Reduction), which includes: (1) a data semantic enhancement system that improves LLM's understanding of tabular data through mapping, enabling better in-context learning, and (2) a cross-table connecting method to establish efficient relationships across complex tables. Experimental results show that GReaTER outperforms the GReaT framework.
Related papers
- LLM-TabFlow: Synthetic Tabular Data Generation with Inter-column Logical Relationship Preservation [49.898152180805454]
This study is the first to explicitly address inter-column relationship preservation in synthetic tabular data generation.<n>LLM-TabFlow is a novel approach that captures complex inter-column relationships and compress data, while using Score-based Diffusion to model the distribution of the compressed data in latent space.<n>Our results show that LLM-TabFlow outperforms all baselines, fully preserving inter-column relationships while achieving the best balance between data fidelity, utility, and privacy.
arXiv Detail & Related papers (2025-03-04T00:47:52Z) - TabGLM: Tabular Graph Language Model for Learning Transferable Representations Through Multi-Modal Consistency Minimization [2.1067477213933503]
TabGLM (Tabular Graph Language Model) is a novel multi-modal architecture designed to model both structural and semantic information from a table.<n>It transforms each row of a table into a fully connected graph and serialized text, which are encoded using a graph neural network (GNN) and a text encoder, respectively.<n> Evaluations across 25 benchmark datasets demonstrate substantial performance gains.
arXiv Detail & Related papers (2025-02-26T05:32:45Z) - TabularARGN: A Flexible and Efficient Auto-Regressive Framework for Generating High-Fidelity Synthetic Data [0.42881773214459123]
We introduce the Tabular Auto-Regressive Generative Network (TabularARGN), a flexible framework to handle mixed-type, multivariate, and sequential datasets.
By training on all possible conditional probabilities, TabularARGN supports advanced features such as fairness-aware generation, imputation, and conditional generation on any subset of columns.
arXiv Detail & Related papers (2025-01-21T10:06:19Z) - On LLM-Enhanced Mixed-Type Data Imputation with High-Order Message Passing [29.144451092549048]
Missing data imputation aims to impute the missing values in the raw datasets to achieve the completeness of datasets.<n>Existing solutions for missing data imputation either 1) only support numerical and categorical data or 2) show an unsatisfactory performance.<n>We propose UnIMP, a Unified IMPutation framework that leverages LLM and high-order message passing to enhance the imputation of mixed-type data.
arXiv Detail & Related papers (2025-01-04T05:05:44Z) - Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - A Framework for Fine-Tuning LLMs using Heterogeneous Feedback [69.51729152929413]
We present a framework for fine-tuning large language models (LLMs) using heterogeneous feedback.
First, we combine the heterogeneous feedback data into a single supervision format, compatible with methods like SFT and RLHF.
Next, given this unified feedback dataset, we extract a high-quality and diverse subset to obtain performance increases.
arXiv Detail & Related papers (2024-08-05T23:20:32Z) - EPIC: Effective Prompting for Imbalanced-Class Data Synthesis in Tabular Data Classification via Large Language Models [39.347666307218006]
Large language models (LLMs) have demonstrated remarkable in-context learning capabilities across diverse applications.<n>We introduce EPIC, a novel approach that leverages balanced, grouped data samples and consistent formatting with unique variable mapping to guide LLMs in generating accurate synthetic data across all classes, even for imbalanced datasets.
arXiv Detail & Related papers (2024-04-15T17:49:16Z) - TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning [55.33939289989238]
We propose TAP4LLM as a versatile pre-processor suite for leveraging large language models (LLMs) in table-based tasks effectively.
It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding.
arXiv Detail & Related papers (2023-12-14T15:37:04Z) - Integrating Graphs with Large Language Models: Methods and Prospects [68.37584693537555]
Large language models (LLMs) have emerged as frontrunners, showcasing unparalleled prowess in diverse applications.
Merging the capabilities of LLMs with graph-structured data has been a topic of keen interest.
This paper bifurcates such integrations into two predominant categories.
arXiv Detail & Related papers (2023-10-09T07:59:34Z) - Generating Realistic Synthetic Relational Data through Graph Variational
Autoencoders [47.89542334125886]
We combine the variational autoencoder framework with graph neural networks to generate realistic synthetic relational databases.
The results indicate that real databases' structures are accurately preserved in the resulting synthetic datasets.
arXiv Detail & Related papers (2022-11-30T10:40:44Z) - Leveraging Data Recasting to Enhance Tabular Reasoning [21.970920861791015]
Prior work has mostly relied on two data generation strategies.
The first is human annotation, which yields linguistically diverse data but is difficult to scale.
The second category for creation is synthetic generation, which is scalable and cost effective but lacks inventiveness.
arXiv Detail & Related papers (2022-11-23T00:04:57Z) - GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing [117.98107557103877]
We present GraPPa, an effective pre-training approach for table semantic parsing.
We construct synthetic question-pairs over high-free tables via a synchronous context-free grammar.
To maintain the model's ability to represent real-world data, we also include masked language modeling.
arXiv Detail & Related papers (2020-09-29T08:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.