論文の概要: Aggrotech: Leveraging Deep Learning for Sustainable Tomato Disease Management
- arxiv url: http://arxiv.org/abs/2501.12052v1
- Date: Tue, 21 Jan 2025 11:25:44 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:24:21.196580
- Title: Aggrotech: Leveraging Deep Learning for Sustainable Tomato Disease Management
- Title(参考訳): Aggrotech: 持続可能なトマト病管理のためのディープラーニングを活用する
- Authors: MD Mehraz Hosen, Md. Hasibul Islam,
- Abstract要約: 2つの確立された畳み込みニューラルネットワーク(CNN)を用いた深層学習によるトマト葉病検出手法を提案する。
VGG19とインセプションv3モデルはトマトの葉病検出のためにトマトビレッジデータセット(4525画像)に採用されている。
降水層の93.93%の精度は、作物の健康モニタリングに有用であることを示している。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Tomato crop health plays a critical role in ensuring agricultural productivity and food security. Timely and accurate detection of diseases affecting tomato plants is vital for effective disease management. In this study, we propose a deep learning-based approach for Tomato Leaf Disease Detection using two well-established convolutional neural networks (CNNs), namely VGG19 and Inception v3. The experiment is conducted on the Tomato Villages Dataset, encompassing images of both healthy tomato leaves and leaves afflicted by various diseases. The VGG19 model is augmented with fully connected layers, while the Inception v3 model is modified to incorporate a global average pooling layer and a dense classification layer. Both models are trained on the prepared dataset, and their performances are evaluated on a separate test set. This research employs VGG19 and Inception v3 models on the Tomato Villages dataset (4525 images) for tomato leaf disease detection. The models' accuracy of 93.93% with dropout layers demonstrates their usefulness for crop health monitoring. The paper suggests a deep learning-based strategy that includes normalization, resizing, dataset preparation, and unique model architectures. During training, VGG19 and Inception v3 serve as feature extractors, with possible data augmentation and fine-tuning. Metrics like accuracy, precision, recall, and F1 score are obtained through evaluation on a test set and offer important insights into the strengths and shortcomings of the model. The method has the potential for practical use in precision agriculture and could help tomato crops prevent illness early on.
- Abstract(参考訳): トマト作物の健康は、農業の生産性と食料の安全を確保する上で重要な役割を担っている。
トマト植物に影響を及ぼす疾患のタイムリーかつ正確な検出は、効果的な疾患管理に不可欠である。
本研究では,2つの確立された畳み込みニューラルネットワーク(CNN),すなわちVGG19とInception v3を用いた深層学習によるトマト葉病検出手法を提案する。
実験はトマトビレッジデータセット上で行われ、健康なトマトの葉と様々な病気に悩まされる葉の両方のイメージを包含する。
VGG19モデルは完全連結層で拡張され、Inception v3モデルはグローバル平均プール層と高密度分類層を組み込むように修正されている。
どちらのモデルも準備されたデータセットでトレーニングされ、そのパフォーマンスは別のテストセットで評価される。
本研究はトマト葉病検出のためのトマトビレッジデータセット(4525画像)のVGG19とインセプションv3モデルを用いている。
降水層の93.93%の精度は、作物の健康モニタリングに有用であることを示している。
本稿では、正規化、サイズ変更、データセットの準備、ユニークなモデルアーキテクチャを含むディープラーニングベースの戦略を提案する。
訓練中、VGG19とInception v3はデータ拡張と微調整が可能な特徴抽出器として機能する。
精度、精度、リコール、F1スコアなどのメトリクスは、テストセットの評価を通じて得られ、モデルの長所と短所に関する重要な洞察を提供する。
この方法は、精密農業で実用化される可能性があり、トマト作物が早期に病気を予防するのに役立つ可能性がある。
関連論文リスト
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
1p/19q遺伝子の同時欠失は、低グレードグリオーマの臨床成績と関連している。
本研究の目的は,MRIを用いた畳み込みニューラルネットワークを脳がん検出に活用することである。
論文 参考訳(メタデータ) (2024-09-29T07:04:26Z) - Enhancing Plant Disease Detection: A Novel CNN-Based Approach with Tensor Subspace Learning and HOWSVD-MD [3.285994579445155]
本稿では,トマト葉病の検出・分類のための最先端技術を紹介する。
本稿では,高次白色特異値分解(Higher-Order Whitened Singular Value Decomposition)と呼ばれる部分空間学習領域における高度なアプローチを提案する。
このイノベーティブな手法の有効性は、2つの異なるデータセットに関する包括的な実験を通じて厳密に検証された。
論文 参考訳(メタデータ) (2024-05-30T13:46:56Z) - Early and Accurate Detection of Tomato Leaf Diseases Using TomFormer [0.3169023552218211]
本稿ではトマト葉病検出のためのトランスフォーマーモデルTomFormerを紹介する。
本稿では,視覚変換器と畳み込みニューラルネットワークを組み合わせた融合モデルを用いて,トマト葉病の検出手法を提案する。
論文 参考訳(メタデータ) (2023-12-26T20:47:23Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Early Detection of Late Blight Tomato Disease using Histogram Oriented Gradient based Support Vector Machine [2.3210922904864955]
本研究は,トマトの遅発性病を早期に検出するための新しいスマート技術を提案する。
提案したSVMとHOGのハイブリッドアルゴリズムは,トマトの遅発性病の早期発見に有意な可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-14T07:58:14Z) - Detection of Tomato Ripening Stages using Yolov3-tiny [0.0]
トマトの分類と検出にはニューラルネットワークを用いたモデルを用いる。
実験の結果, カスタムデータセットにおける熟成段階の局在と分類において, f1スコアは90.0%であった。
論文 参考訳(メタデータ) (2023-02-01T00:57:58Z) - Stacking Ensemble Learning in Deep Domain Adaptation for Ophthalmic
Image Classification [61.656149405657246]
ドメイン適応は、十分なラベルデータを取得することが困難な画像分類タスクに有効である。
本稿では,3つのドメイン適応手法を拡張することで,アンサンブル学習を積み重ねるための新しい手法SELDAを提案する。
Age-Related Eye Disease Study (AREDS)ベンチマーク眼科データセットを用いた実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2022-09-27T14:19:00Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - One-Shot Learning with Triplet Loss for Vegetation Classification Tasks [45.82374977939355]
三重項損失関数は、ワンショット学習タスクの精度を大幅に向上できる選択肢の1つである。
2015年からは、多くのプロジェクトがシームズネットワークとこの種の損失を顔認識とオブジェクト分類に利用している。
論文 参考訳(メタデータ) (2020-12-14T10:44:22Z) - Real-time Plant Health Assessment Via Implementing Cloud-based Scalable
Transfer Learning On AWS DeepLens [0.8714677279673736]
植物葉病の検出・分類のための機械学習手法を提案する。
私たちは、AWS SageMaker上でスケーラブルな転送学習を使用して、リアルタイムの実用的なユーザビリティのために、AWS DeepLensにインポートしています。
果実や野菜の健康・不健康な葉の広範な画像データセットに関する実験では,植物葉病のリアルタイム診断で98.78%の精度を示した。
論文 参考訳(メタデータ) (2020-09-09T05:23:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。