BotDetect: A Decentralized Federated Learning Framework for Detecting Financial Bots on the EVM Blockchains
- URL: http://arxiv.org/abs/2501.12112v1
- Date: Tue, 21 Jan 2025 13:15:43 GMT
- Title: BotDetect: A Decentralized Federated Learning Framework for Detecting Financial Bots on the EVM Blockchains
- Authors: Ahmed Mounsf Rafik Bendada, Abdelaziz Amara Korba, Mouhamed Amine Bouchiha, Yacine Ghamri-Doudane,
- Abstract summary: This paper presents a decentralized federated learning (DFL) approach for detecting financial bots within Virtual Machine (EVM)-based blockchains.
The proposed framework leverages federated learning, orchestrated through smart contracts, to detect malicious bot behavior.
Experimental results show that our DFL framework achieves high detection accuracy while maintaining scalability and robustness.
- Score: 3.4636217357968904
- License:
- Abstract: The rapid growth of decentralized finance (DeFi) has led to the widespread use of automated agents, or bots, within blockchain ecosystems like Ethereum, Binance Smart Chain, and Solana. While these bots enhance market efficiency and liquidity, they also raise concerns due to exploitative behaviors that threaten network integrity and user trust. This paper presents a decentralized federated learning (DFL) approach for detecting financial bots within Ethereum Virtual Machine (EVM)-based blockchains. The proposed framework leverages federated learning, orchestrated through smart contracts, to detect malicious bot behavior while preserving data privacy and aligning with the decentralized nature of blockchain networks. Addressing the limitations of both centralized and rule-based approaches, our system enables each participating node to train local models on transaction history and smart contract interaction data, followed by on-chain aggregation of model updates through a permissioned consensus mechanism. This design allows the model to capture complex and evolving bot behaviors without requiring direct data sharing between nodes. Experimental results demonstrate that our DFL framework achieves high detection accuracy while maintaining scalability and robustness, providing an effective solution for bot detection across distributed blockchain networks.
Related papers
- Detecting Financial Bots on the Ethereum Blockchain [0.4779196219827508]
Bots in Distributed Ledger Technologies (DLTs) foster efficiency and automation.
Their use is also associated with predatory trading and market manipulation, and can pose threats to system integrity.
Current detection systems are predominantly rule-based and lack flexibility.
We present a novel approach that utilizes machine learning for the detection of financial bots on the platform.
arXiv Detail & Related papers (2024-03-28T16:06:06Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
Decentralized approaches like blockchain offer a compelling solution by implementing a consensus mechanism among multiple entities.
Federated Learning (FL) enables participants to collaboratively train models while safeguarding data privacy.
This paper investigates the synergy between blockchain's security features and FL's privacy-preserving model training capabilities.
arXiv Detail & Related papers (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
We design a Graph Attention Network (GAT)-based reliable block propagation optimization framework for blockchain-enabled Web 3.0.
To achieve the reliability of block propagation, we introduce a reputation mechanism based on the subjective logic model.
Considering that the GAT possesses the excellent ability to process graph-structured data, we utilize the GAT with reinforcement learning to obtain the optimal block propagation trajectory.
arXiv Detail & Related papers (2024-03-20T01:58:38Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence (GAI) has emerged as a promising solution to address challenges of blockchain technology.
In this paper, we first introduce GAI techniques, outline their applications, and discuss existing solutions for integrating GAI into blockchains.
arXiv Detail & Related papers (2024-01-28T10:46:17Z) - MRL-PoS: A Multi-agent Reinforcement Learning based Proof of Stake Consensus Algorithm for Blockchain [0.18641315013048293]
This paper introduces MRL-PoS, a Proof-of-Stake consensus algorithm based on multi-agent reinforcement learning.
It incorporates a system of rewards and penalties to eliminate malicious nodes and incentivize honest ones.
arXiv Detail & Related papers (2023-12-14T16:58:18Z) - Secure Decentralized Learning with Blockchain [13.795131629462798]
Federated Learning (FL) is a well-known paradigm of distributed machine learning on mobile and IoT devices.
To avoid the single point of failure problem in FL, decentralized learning (DFL) has been proposed to use peer-to-peer communication for model aggregation.
arXiv Detail & Related papers (2023-10-10T23:45:17Z) - Defending Against Poisoning Attacks in Federated Learning with
Blockchain [12.840821573271999]
We propose a secure and reliable federated learning system based on blockchain and distributed ledger technology.
Our system incorporates a peer-to-peer voting mechanism and a reward-and-slash mechanism, which are powered by on-chain smart contracts, to detect and deter malicious behaviors.
arXiv Detail & Related papers (2023-07-02T11:23:33Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL) with
Lazy Clients [124.48732110742623]
We propose a novel framework by integrating blockchain into Federated Learning (FL)
BLADE-FL has a good performance in terms of privacy preservation, tamper resistance, and effective cooperation of learning.
It gives rise to a new problem of training deficiency, caused by lazy clients who plagiarize others' trained models and add artificial noises to conceal their cheating behaviors.
arXiv Detail & Related papers (2020-12-02T12:18:27Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL) enables mobile devices to collaboratively train neural network models required by a Machine Learning Model Owner (MLMO)
The issue of BFL is that the mobile devices have energy and CPU constraints that may reduce the system lifetime and training efficiency.
We propose to use the Deep Reinforcement Learning (DRL) to derive the optimal decisions for theO.
arXiv Detail & Related papers (2020-04-08T16:29:19Z) - Byzantine-resilient Decentralized Stochastic Gradient Descent [85.15773446094576]
We present an in-depth study towards the Byzantine resilience of decentralized learning systems.
We propose UBAR, a novel algorithm to enhance decentralized learning with Byzantine Fault Tolerance.
arXiv Detail & Related papers (2020-02-20T05:11:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.