Regularized dynamical parametric approximation of stiff evolution problems
- URL: http://arxiv.org/abs/2501.12118v1
- Date: Tue, 21 Jan 2025 13:29:36 GMT
- Title: Regularized dynamical parametric approximation of stiff evolution problems
- Authors: Christian Lubich, Jörg Nick,
- Abstract summary: We study a class of nonlinear parametrizations $ u(t) = Phi(theta(t)) $, where the evolving parameters $theta(t)$ are to be computed.
The primary focus is on tackling the challenges posed by the combination of stiff evolution problems and irregular parametrizations.
- Score: 0.0
- License:
- Abstract: Evolutionary deep neural networks have emerged as a rapidly growing field of research. This paper studies numerical integrators for such and other classes of nonlinear parametrizations $ u(t) = \Phi(\theta(t)) $, where the evolving parameters $\theta(t)$ are to be computed. The primary focus is on tackling the challenges posed by the combination of stiff evolution problems and irregular parametrizations, which typically arise with neural networks, tensor networks, flocks of evolving Gaussians, and in further cases of overparametrization. We propose and analyse regularized parametric versions of the implicit Euler method and higher-order implicit Runge--Kutta methods for the time integration of the parameters in nonlinear approximations to evolutionary partial differential equations and large systems of stiff ordinary differential equations. At each time step, an ill-conditioned nonlinear optimization problem is solved approximately with a few regularized Gauss--Newton iterations. Error bounds for the resulting parametric integrator are derived by relating the computationally accessible Gauss--Newton iteration for the parameters to the computationally inaccessible Newton iteration for the underlying non-parametric time integration scheme. The theoretical findings are supported by numerical experiments that are designed to show key properties of the proposed parametric integrators.
Related papers
- A Model-Constrained Discontinuous Galerkin Network (DGNet) for Compressible Euler Equations with Out-of-Distribution Generalization [0.0]
We develop a model-constrained discontinuous Galerkin Network (DGNet) approach.
The core of DGNet is the synergy of several key strategies.
We present comprehensive numerical results for 1D and 2D compressible Euler equation problems.
arXiv Detail & Related papers (2024-09-27T01:13:38Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - A Structure-Guided Gauss-Newton Method for Shallow ReLU Neural Network [18.06366638807982]
We propose a structure-guided Gauss-Newton (SgGN) method for solving least squares problems using a shallow ReLU neural network.
The method effectively takes advantage of both the least squares structure and the neural network structure of the objective function.
arXiv Detail & Related papers (2024-04-07T20:24:44Z) - Gradient-based bilevel optimization for multi-penalty Ridge regression
through matrix differential calculus [0.46040036610482665]
We introduce a gradient-based approach to the problem of linear regression with l2-regularization.
We show that our approach outperforms LASSO, Ridge, and Elastic Net regression.
The analytical of the gradient proves to be more efficient in terms of computational time compared to automatic differentiation.
arXiv Detail & Related papers (2023-11-23T20:03:51Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.
This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.
We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
We propose a novel non-parametric learning paradigm for the identification of drift and diffusion coefficients of non-linear differential equations.
The key idea essentially consists of fitting a RKHS-based approximation of the corresponding Fokker-Planck equation to such observations.
arXiv Detail & Related papers (2023-05-24T20:43:47Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
We propose a numerical scheme based on Random Projection Neural Networks (RPNN) for the solution of Ordinary Differential Equations (ODEs)
We show that our proposed scheme yields good numerical approximation accuracy without being affected by the stiffness, thus outperforming in same cases the textttode45 and textttode15s functions.
arXiv Detail & Related papers (2021-08-03T15:49:17Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Understanding Implicit Regularization in Over-Parameterized Single Index
Model [55.41685740015095]
We design regularization-free algorithms for the high-dimensional single index model.
We provide theoretical guarantees for the induced implicit regularization phenomenon.
arXiv Detail & Related papers (2020-07-16T13:27:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
One of the main challenges in using deep learning-based methods for simulating physical systems is formulating physics-based data.
We propose a novel multi-level graph neural network framework that captures interaction at all ranges with only linear complexity.
Experiments confirm our multi-graph network learns discretization-invariant solution operators to PDEs and can be evaluated in linear time.
arXiv Detail & Related papers (2020-06-16T21:56:22Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.