Neural network-enhanced integrators for simulating ordinary differential equations
- URL: http://arxiv.org/abs/2504.05493v1
- Date: Mon, 07 Apr 2025 20:38:35 GMT
- Title: Neural network-enhanced integrators for simulating ordinary differential equations
- Authors: Amine Othmane, Kathrin Flaßkamp,
- Abstract summary: NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes.<n>The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Numerous applications necessitate the computation of numerical solutions to differential equations across a wide range of initial conditions and system parameters, which feeds the demand for efficient yet accurate numerical integration methods.This study proposes a neural network (NN) enhancement of classical numerical integrators. NNs are trained to learn integration errors, which are then used as additive correction terms in numerical schemes. The performance of these enhanced integrators is compared with well-established methods through numerical studies, with a particular emphasis on computational efficiency. Analytical properties are examined in terms of local errors and backward error analysis. Embedded Runge-Kutta schemes are then employed to develop enhanced integrators that mitigate generalization risk, ensuring that the neural network's evaluation in previously unseen regions of the state space does not destabilize the integrator. It is guaranteed that the enhanced integrators perform at least as well as the desired classical Runge-Kutta schemes. The effectiveness of the proposed approaches is demonstrated through extensive numerical studies using a realistic model of a wind turbine, with parameters derived from the established simulation framework OpenFast.
Related papers
- Advanced Physics-Informed Neural Network with Residuals for Solving Complex Integral Equations [0.13499500088995461]
RISN is a novel neural network architecture designed to solve a wide range of integral and integro-differential equations.<n>We show that RISN consistently outperforms PINN, achieving significantly lower Mean Absolute Errors (MAE) across various types of equations.<n>The results highlight RISN's robustness and efficiency in solving challenging integral and integro-differential problems.
arXiv Detail & Related papers (2025-01-22T19:47:03Z) - Regularized dynamical parametric approximation of stiff evolution problems [0.0]
We study a class of nonlinear parametrizations $ u(t) = Phi(theta(t)) $, where the evolving parameters $theta(t)$ are to be computed.<n>The primary focus is on tackling the challenges posed by the combination of stiff evolution problems and irregular parametrizations.
arXiv Detail & Related papers (2025-01-21T13:29:36Z) - Neural Control Variates with Automatic Integration [49.91408797261987]
This paper proposes a novel approach to construct learnable parametric control variates functions from arbitrary neural network architectures.
We use the network to approximate the anti-derivative of the integrand.
We apply our method to solve partial differential equations using the Walk-on-sphere algorithm.
arXiv Detail & Related papers (2024-09-23T06:04:28Z) - Enhancing Low-Order Discontinuous Galerkin Methods with Neural Ordinary Differential Equations for Compressible Navier--Stokes Equations [0.1578515540930834]
We introduce an end-to-end differentiable framework for solving the compressible Navier-Stokes equations.<n>This integrated approach combines a differentiable discontinuous Galerkin solver with a neural network source term.<n>We demonstrate the performance of the proposed framework through two examples.
arXiv Detail & Related papers (2023-10-29T04:26:23Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - AttNS: Attention-Inspired Numerical Solving For Limited Data Scenarios [51.94807626839365]
We propose the attention-inspired numerical solver (AttNS) to solve differential equations due to limited data.<n>AttNS is inspired by the effectiveness of attention modules in Residual Neural Networks (ResNet) in enhancing model generalization and robustness.
arXiv Detail & Related papers (2023-02-05T01:39:21Z) - Taylor-Lagrange Neural Ordinary Differential Equations: Toward Fast
Training and Evaluation of Neural ODEs [22.976119802895017]
We propose a data-driven approach to the training of neural ordinary differential equations (NODEs)
The proposed approach achieves the same accuracy as adaptive step-size schemes while employing only low-order Taylor expansions.
A suite of numerical experiments demonstrate that TL-NODEs can be trained more than an order of magnitude faster than state-of-the-art approaches.
arXiv Detail & Related papers (2022-01-14T23:56:19Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
Solving partial differential equations (PDE) is an indispensable part of many branches of science as many processes can be modelled in terms of PDEs.
Recent numerical solvers require manual discretization of the underlying equation as well as sophisticated, tailored code for distributed computing.
We examine the applicability of continuous, mesh-free neural solvers for partial differential equations, physics-informed neural networks (PINNs)
We discuss the accuracy of GatedPINN with respect to analytical solutions -- as well as state-of-the-art numerical solvers, such as spectral solvers.
arXiv Detail & Related papers (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Neural Control Variates [71.42768823631918]
We show that a set of neural networks can face the challenge of finding a good approximation of the integrand.
We derive a theoretically optimal, variance-minimizing loss function, and propose an alternative, composite loss for stable online training in practice.
Specifically, we show that the learned light-field approximation is of sufficient quality for high-order bounces, allowing us to omit the error correction and thereby dramatically reduce the noise at the cost of negligible visible bias.
arXiv Detail & Related papers (2020-06-02T11:17:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.