STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting
- URL: http://arxiv.org/abs/2409.05921v1
- Date: Sun, 8 Sep 2024 15:29:27 GMT
- Title: STLLM-DF: A Spatial-Temporal Large Language Model with Diffusion for Enhanced Multi-Mode Traffic System Forecasting
- Authors: Zhiqi Shao, Haoning Xi, Haohui Lu, Ze Wang, Michael G. H. Bell, Junbin Gao,
- Abstract summary: We propose the Spatial-Temporal Large Language Model (STLLM-DF) to improve multi-task transportation prediction.
The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs.
We show that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40% in MAE, 4.50% in RMSE, and 1.51% in MAPE.
- Score: 32.943673568195315
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The rapid advancement of Intelligent Transportation Systems (ITS) presents challenges, particularly with missing data in multi-modal transportation and the complexity of handling diverse sequential tasks within a centralized framework. To address these issues, we propose the Spatial-Temporal Large Language Model Diffusion (STLLM-DF), an innovative model that leverages Denoising Diffusion Probabilistic Models (DDPMs) and Large Language Models (LLMs) to improve multi-task transportation prediction. The DDPM's robust denoising capabilities enable it to recover underlying data patterns from noisy inputs, making it particularly effective in complex transportation systems. Meanwhile, the non-pretrained LLM dynamically adapts to spatial-temporal relationships within multi-modal networks, allowing the system to efficiently manage diverse transportation tasks in both long-term and short-term predictions. Extensive experiments demonstrate that STLLM-DF consistently outperforms existing models, achieving an average reduction of 2.40\% in MAE, 4.50\% in RMSE, and 1.51\% in MAPE. This model significantly advances centralized ITS by enhancing predictive accuracy, robustness, and overall system performance across multiple tasks, thus paving the way for more effective spatio-temporal traffic forecasting through the integration of frozen transformer language models and diffusion techniques.
Related papers
- CoSTI: Consistency Models for (a faster) Spatio-Temporal Imputation [0.0]
CoSTI employs Consistency Training to achieve comparable imputation quality to DDPMs while drastically reducing inference times.
We evaluate CoSTI across multiple datasets and missing data scenarios, demonstrating up to a 98% reduction in imputation time with performance par with diffusion-based models.
arXiv Detail & Related papers (2025-01-31T18:14:28Z) - PreMixer: MLP-Based Pre-training Enhanced MLP-Mixers for Large-scale Traffic Forecasting [30.055634767677823]
In urban computing, precise and swift forecasting of time series data from traffic networks is crucial.
Current research limitations because of inherent inefficiency of model and their unsuitability for large-scale traffic applications due to model complexity.
This paper proposes a novel framework, named PreMixer, designed to bridge this gap. It features a predictive model and a pre-training mechanism, both based on the principles of Multi-Layer Perceptrons (MLP)
Our framework achieves comparable state-of-theart performance while maintaining high computational efficiency, as verified by extensive experiments on large-scale traffic datasets.
arXiv Detail & Related papers (2024-12-18T08:35:40Z) - Multimodal Latent Language Modeling with Next-Token Diffusion [111.93906046452125]
Multimodal generative models require a unified approach to handle both discrete data (e.g., text and code) and continuous data (e.g., image, audio, video)
We propose Latent Language Modeling (LatentLM), which seamlessly integrates continuous and discrete data using causal Transformers.
arXiv Detail & Related papers (2024-12-11T18:57:32Z) - R-MTLLMF: Resilient Multi-Task Large Language Model Fusion at the Wireless Edge [78.26352952957909]
Multi-task large language models (MTLLMs) are important for many applications at the wireless edge, where users demand specialized models to handle multiple tasks efficiently.
The concept of model fusion via task vectors has emerged as an efficient approach for combining fine-tuning parameters to produce an MTLLM.
In this paper, the problem of enabling edge users to collaboratively craft such MTLMs via tasks vectors is studied, under the assumption of worst-case adversarial attacks.
arXiv Detail & Related papers (2024-11-27T10:57:06Z) - Adaptive Multi-Scale Decomposition Framework for Time Series Forecasting [26.141054975797868]
We propose a novel Adaptive Multi-Scale Decomposition (AMD) framework for time series forecasting (TSF)
Our framework decomposes time series into distinct temporal patterns at multiple scales, leveraging the Multi-Scale Decomposable Mixing (MDM) block.
Our approach effectively models both temporal and channel dependencies and utilizes autocorrelation to refine multi-scale data integration.
arXiv Detail & Related papers (2024-06-06T05:27:33Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - EMDM: Efficient Motion Diffusion Model for Fast and High-Quality Motion Generation [57.539634387672656]
Current state-of-the-art generative diffusion models have produced impressive results but struggle to achieve fast generation without sacrificing quality.
We introduce Efficient Motion Diffusion Model (EMDM) for fast and high-quality human motion generation.
arXiv Detail & Related papers (2023-12-04T18:58:38Z) - Denoising Task Routing for Diffusion Models [19.373733104929325]
Diffusion models generate highly realistic images by learning a multi-step denoising process.
Despite the inherent connection between diffusion models and multi-task learning (MTL), there remains an unexplored area in designing neural architectures.
We present Denoising Task Routing (DTR), a simple add-on strategy for existing diffusion model architectures to establish distinct information pathways.
arXiv Detail & Related papers (2023-10-11T02:23:18Z) - Perceiver-based CDF Modeling for Time Series Forecasting [25.26713741799865]
We propose a new architecture, called perceiver-CDF, for modeling cumulative distribution functions (CDF) of time series data.
Our approach combines the perceiver architecture with a copula-based attention mechanism tailored for multimodal time series prediction.
Experiments on the unimodal and multimodal benchmarks consistently demonstrate a 20% improvement over state-of-the-art methods.
arXiv Detail & Related papers (2023-10-03T01:13:17Z) - Diffusion Model is an Effective Planner and Data Synthesizer for
Multi-Task Reinforcement Learning [101.66860222415512]
Multi-Task Diffusion Model (textscMTDiff) is a diffusion-based method that incorporates Transformer backbones and prompt learning for generative planning and data synthesis.
For generative planning, we find textscMTDiff outperforms state-of-the-art algorithms across 50 tasks on Meta-World and 8 maps on Maze2D.
arXiv Detail & Related papers (2023-05-29T05:20:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.