Comparative Analysis of Hand-Crafted and Machine-Driven Histopathological Features for Prostate Cancer Classification and Segmentation
- URL: http://arxiv.org/abs/2501.12415v1
- Date: Sun, 19 Jan 2025 17:43:49 GMT
- Title: Comparative Analysis of Hand-Crafted and Machine-Driven Histopathological Features for Prostate Cancer Classification and Segmentation
- Authors: Feda Bolus Al Baqain, Omar Sultan Al-Kadi,
- Abstract summary: We present a comparative analysis of two approaches for segmenting glandular structures in prostate images to automate Gleason grading.
The first approach utilizes a hand-crafted learning technique, combining Gray Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) texture descriptors.
For machine driven feature extraction, we employ a U-Net convolutional neural network to perform semantic segmentation of prostate gland stroma tissue.
- Score: 0.0
- License:
- Abstract: Histopathological image analysis is a reliable method for prostate cancer identification. In this paper, we present a comparative analysis of two approaches for segmenting glandular structures in prostate images to automate Gleason grading. The first approach utilizes a hand-crafted learning technique, combining Gray Level Co-Occurrence Matrix (GLCM) and Local Binary Pattern (LBP) texture descriptors to highlight spatial dependencies and minimize information loss at the pixel level. For machine driven feature extraction, we employ a U-Net convolutional neural network to perform semantic segmentation of prostate gland stroma tissue. Support vector machine-based learning of hand-crafted features achieves impressive classification accuracies of 99.0% and 95.1% for GLCM and LBP, respectively, while the U-Net-based machine-driven features attain 94% accuracy. Furthermore, a comparative analysis demonstrates superior segmentation quality for histopathological grades 1, 2, 3, and 4 using the U-Net approach, as assessed by Jaccard and Dice metrics. This work underscores the utility of machine-driven features in clinical applications that rely on automated pixel-level segmentation in prostate tissue images.
Related papers
- Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
This paper provides a way to analyze argyrophilic nucleolar organizer regions (AgNOR) stained slide using deep learning approaches.
Our results show that the semantic segmentation using U-Net with ResNet-18 or ResNet-34 as the backbone have similar results.
The best model shows an IoU for nucleus, cluster, and satellites of 0.83, 0.92, and 0.99 respectively.
arXiv Detail & Related papers (2022-10-19T15:15:32Z) - Application of Graph Based Features in Computer Aided Diagnosis for
Histopathological Image Classification of Gastric Cancer [7.607669435880715]
Graph based features are applied to gastric cancer histopathology microscopic image analysis.
It is found that using U-Net to segment tissue areas, then extracting graph based features, and finally using RBF SVM classifier gives the optimal results with 94.29%.
arXiv Detail & Related papers (2022-05-17T16:16:29Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Prostate Gland Segmentation in Histology Images via Residual and
Multi-Resolution U-Net [1.244681179922733]
This work is a prostate gland segmentation based on U-Net convolutional neural network architectures modified with residual and multi-resolution blocks, trained using data augmentation techniques.
The residual configuration outperforms in the test subset the previous state-of-the-art approaches in an image-level comparison, reaching an average Dice Index of 0.77.
arXiv Detail & Related papers (2021-05-21T20:11:36Z) - Going Deeper through the Gleason Scoring Scale: An Automatic end-to-end
System for Histology Prostate Grading and Cribriform Pattern Detection [7.929433631399375]
The objective of this work is to develop a deep-learning-based system able to support pathologists in the daily analysis of prostate biopsies.
The methodological core of this work is a patch-wise predictive model based on convolutional neural networks able to determine the presence of cancerous patterns.
arXiv Detail & Related papers (2021-05-21T17:51:53Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
Prostate cancer (PCa) is one of the leading causes of death among men, with almost 1.41 million new cases and around 375,000 deaths in 2020.
To perform an automatic diagnosis, prostate tissue samples are first digitized into gigapixel-resolution whole-slide images.
Small subimages called patches are extracted and predicted, obtaining a patch-level classification.
arXiv Detail & Related papers (2021-05-20T18:13:58Z) - Deeply supervised UNet for semantic segmentation to assist
dermatopathological assessment of Basal Cell Carcinoma (BCC) [2.031570465477242]
We focus on detecting Basal Cell Carcinoma (BCC) through semantic segmentation using several models based on the UNet architecture.
We analyze two different encoders for the first part of the UNet network and two additional training strategies.
The best model achieves over 96%, accuracy, sensitivity, and specificity on the test set.
arXiv Detail & Related papers (2021-03-05T15:39:55Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Gleason Grading of Histology Prostate Images through Semantic
Segmentation via Residual U-Net [60.145440290349796]
The final diagnosis of prostate cancer is based on the visual detection of Gleason patterns in prostate biopsy by pathologists.
Computer-aided-diagnosis systems allow to delineate and classify the cancerous patterns in the tissue.
The methodological core of this work is a U-Net convolutional neural network for image segmentation modified with residual blocks able to segment cancerous tissue.
arXiv Detail & Related papers (2020-05-22T19:49:10Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
" 2018 Left Atrium Challenge" using 154 3D LGE-MRIs, currently the world's largest cardiac LGE-MRI dataset.
Analyse of the submitted algorithms using technical and biological metrics was performed.
Results show the top method achieved a dice score of 93.2% and a mean surface to a surface distance of 0.7 mm.
arXiv Detail & Related papers (2020-04-26T08:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.