論文の概要: Multi-stage intermediate fusion for multimodal learning to classify non-small cell lung cancer subtypes from CT and PET
- arxiv url: http://arxiv.org/abs/2501.12425v1
- Date: Tue, 21 Jan 2025 12:10:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 16:53:08.891902
- Title: Multi-stage intermediate fusion for multimodal learning to classify non-small cell lung cancer subtypes from CT and PET
- Title(参考訳): マルチモーダル・ラーニングのための多段階中間核融合法によるCTおよびPETの非小細胞肺癌亜型分類
- Authors: Fatih Aksu, Fabrizia Gelardi, Arturo Chiti, Paolo Soda,
- Abstract要約: 本研究では,CTおよびPET画像からNSCLCサブタイプを分類するための多段階中間核融合法を提案する。
本手法は特徴抽出の異なる段階における2つのモダリティを統合する。
提案手法は, それぞれ0.724と0.681の精度で, 鍵となる指標の代替案を全て上回り, 精度は0.724と0.681であることを示した。
- 参考スコア(独自算出の注目度): 0.43498389175652047
- License:
- Abstract: Accurate classification of histological subtypes of non-small cell lung cancer (NSCLC) is essential in the era of precision medicine, yet current invasive techniques are not always feasible and may lead to clinical complications. This study presents a multi-stage intermediate fusion approach to classify NSCLC subtypes from CT and PET images. Our method integrates the two modalities at different stages of feature extraction, using voxel-wise fusion to exploit complementary information across varying abstraction levels while preserving spatial correlations. We compare our method against unimodal approaches using only CT or PET images to demonstrate the benefits of modality fusion, and further benchmark it against early and late fusion techniques to highlight the advantages of intermediate fusion during feature extraction. Additionally, we compare our model with the only existing intermediate fusion method for histological subtype classification using PET/CT images. Our results demonstrate that the proposed method outperforms all alternatives across key metrics, with an accuracy and AUC equal to 0.724 and 0.681, respectively. This non-invasive approach has the potential to significantly improve diagnostic accuracy, facilitate more informed treatment decisions, and advance personalized care in lung cancer management.
- Abstract(参考訳): 非小細胞肺癌(NSCLC)の組織学的サブタイプの正確な分類は、精密医療の時代に必須であるが、現在の侵襲的手法は必ずしも実現可能ではなく、臨床合併症につながる可能性がある。
本研究では,CTおよびPET画像からNSCLCサブタイプを分類するための多段階中間核融合法を提案する。
本手法は特徴抽出の異なる段階における2つのモダリティを統合し,空間的相関を保ちながら,様々な抽象レベルにまたがる相補的情報を利用する。
我々は,CTやPET画像のみを用いた一元的アプローチとの比較を行い,早期・後期の融合技術と比較し,特徴抽出における中間核融合の利点を強調した。
さらに,PET/CT画像を用いた組織学的サブタイプ分類において,既存の中間融合法との比較を行った。
提案手法は, それぞれ0.724と0.681の精度で, 鍵となる指標の代替案を全て上回り, 精度は0.724と0.681であることを示した。
この非侵襲的アプローチは、診断精度を大幅に改善し、より情報的な治療決定を促進し、肺がん管理におけるパーソナライズされたケアを促進する可能性がある。
関連論文リスト
- Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection [3.1850395068284785]
早期に検出された口腔癌は治療可能であるが、後期に致命的になることが多い。
コンピュータ支援法は、費用対効果と正確な細胞学的解析に不可欠である。
本研究は,マルチモーダルイメージングとディープフュージョンを用いた,AIによる口腔癌検出の改善を目的とする。
論文 参考訳(メタデータ) (2024-07-02T01:05:35Z) - PEMMA: Parameter-Efficient Multi-Modal Adaptation for Medical Image Segmentation [5.056996354878645]
CTとPETの両方のスキャンが利用可能であれば、それらをセグメンテーションモデルへの入力の2つのチャネルとして組み合わせることが一般的である。
この方法は、トレーニングと推論の両方のスキャンタイプを必要とし、PETスキャンの可用性が制限されているため、課題を提起する。
変圧器を用いたセグメンテーションモデルの軽量アップグレードのためのパラメータ効率・マルチモーダル適応フレームワークを提案する。
論文 参考訳(メタデータ) (2024-04-21T16:29:49Z) - Contrastive Diffusion Model with Auxiliary Guidance for Coarse-to-Fine
PET Reconstruction [62.29541106695824]
本稿では, 粗い予測モジュール (CPM) と反復的修正モジュール (IRM) から構成される粗大なPET再構成フレームワークを提案する。
計算オーバーヘッドの大部分をCPMに委譲することで,本手法のサンプリング速度を大幅に向上させることができる。
2つの追加戦略、すなわち補助的な誘導戦略と対照的な拡散戦略が提案され、再構築プロセスに統合される。
論文 参考訳(メタデータ) (2023-08-20T04:10:36Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
本研究では,深層学習に基づく脳波チャンネルの特徴レベル融合を行う。
チャネル選択,融合,分類手順を2つの最適化アルゴリズムで最適化した。
論文 参考訳(メタデータ) (2021-12-18T14:17:49Z) - Multimodal Spatial Attention Module for Targeting Multimodal PET-CT Lung
Tumor Segmentation [11.622615048002567]
マルチモーダル空間アテンションモジュール(MSAM)は腫瘍に関連する領域を強調することを学ぶ。
MSAMは一般的なバックボーンアーキテクチャやトレーニングされたエンドツーエンドに適用できる。
論文 参考訳(メタデータ) (2020-07-29T10:27:22Z) - Co-Heterogeneous and Adaptive Segmentation from Multi-Source and
Multi-Phase CT Imaging Data: A Study on Pathological Liver and Lesion
Segmentation [48.504790189796836]
我々は,新しいセグメンテーション戦略,コヘテロジネティック・アダプティブセグメンテーション(CHASe)を提案する。
本稿では,外見に基づく半スーパービジョン,マスクに基づく対向ドメイン適応,擬似ラベルを融合した多目的フレームワークを提案する。
CHASeは4.2% sim 9.4%$の範囲で、病理的な肝臓マスクDice-Sorensen係数をさらに改善することができる。
論文 参考訳(メタデータ) (2020-05-27T06:58:39Z) - Detecting Pancreatic Ductal Adenocarcinoma in Multi-phase CT Scans via
Alignment Ensemble [77.5625174267105]
膵管腺癌(PDAC)は最も致命的ながんの1つである。
複数のフェーズは単一のフェーズよりも多くの情報を提供するが、それらは整列せず、テクスチャにおいて不均一である。
PDAC検出性能を高めるために,これらすべてのアライメントのアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-03-18T19:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。