論文の概要: Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection
- arxiv url: http://arxiv.org/abs/2407.01869v2
- Date: Sun, 27 Oct 2024 16:58:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:37:26.436466
- Title: Let it shine: Autofluorescence of Papanicolaou-stain improves AI-based cytological oral cancer detection
- Title(参考訳): Papanicolaou-stainのオート蛍光は、AIによる口腔癌検出を改善
- Authors: Wenyi Lian, Joakim Lindblad, Christina Runow Stark, Jan-Michaél Hirsch, Nataša Sladoje,
- Abstract要約: 早期に検出された口腔癌は治療可能であるが、後期に致命的になることが多い。
コンピュータ支援法は、費用対効果と正確な細胞学的解析に不可欠である。
本研究は,マルチモーダルイメージングとディープフュージョンを用いた,AIによる口腔癌検出の改善を目的とする。
- 参考スコア(独自算出の注目度): 3.1850395068284785
- License:
- Abstract: Oral cancer is a global health challenge. It is treatable if detected early, but it is often fatal in late stages. There is a shift from the invasive and time-consuming tissue sampling and histological examination, toward non-invasive brush biopsies and cytological examination. Reliable computer-assisted methods are essential for cost-effective and accurate cytological analysis, but the lack of detailed cell-level annotations impairs model effectiveness. This study aims to improve AI-based oral cancer detection using multimodal imaging and deep fusion. We combine brightfield and fluorescence whole slide microscopy imaging to analyze Papanicolaou-stained liquid-based cytology slides of brush biopsies collected from both healthy and cancer patients. Due to limited cytological annotations, we utilize a weakly supervised deep learning approach using only patient-level labels. We evaluate various multimodal fusion strategies, including early, late, and three recent intermediate fusion methods. Our results show: (i) fluorescence imaging of Papanicolaou-stained samples provides substantial diagnostic information; (ii) multimodal fusion enhances classification and cancer detection accuracy over single-modality methods. Intermediate fusion is the leading method among the studied approaches. Specifically, the Co-Attention Fusion Network (CAFNet) model excels with an F1 score of 83.34% and accuracy of 91.79%, surpassing human performance on the task. Additional tests highlight the need for precise image registration to optimize multimodal analysis benefits. This study advances cytopathology by combining deep learning and multimodal imaging to enhance early, non-invasive detection of oral cancer, improving diagnostic accuracy and streamlining clinical workflows. The developed pipeline is also applicable in other cytological settings. Our codes and dataset are available online for further research.
- Abstract(参考訳): 口腔がんは世界的な健康問題である。
早期に検出すると治療できるが、後期には致命的になることが多い。
非侵襲的なブラシ生検や細胞診に移行した。
信頼性の高いコンピュータ支援法は、コスト効率と正確な細胞学的解析に不可欠であるが、詳細な細胞レベルのアノテーションが欠如していることはモデルの有効性を損なう。
本研究は,マルチモーダルイメージングとディープフュージョンを用いた,AIによる口腔癌検出の改善を目的とする。
健常者およびがん患者から採取したブラシ生検の,パパニコラオ染色液性細胞診スライドを解析するために,光電場と蛍光全身顕微鏡を併用した。
細胞学的アノテーションが限られているため,患者レベルのラベルのみを用いて,弱い教師付き深層学習アプローチを採用する。
我々は, 早期・後期・最近の3つの中間核融合手法を含む, 様々な多モード核融合戦略を評価する。
私たちの結果は以下のとおりです。
イ)パパニコラオ染色試料の蛍光イメージングは、相当な診断情報を提供する。
(ii)マルチモーダル融合は単一モーダル法よりも分類と癌検出の精度を高める。
中間核融合は研究手法の第一の方法である。
具体的には、コ・アテンション・フュージョン・ネットワーク(CAFNet)モデルは、F1スコアが83.34%、精度が91.79%で、タスクにおける人間のパフォーマンスを上回っている。
追加テストでは、マルチモーダル分析の利点を最適化するために、正確な画像登録の必要性を強調している。
本研究は, 深層学習とマルチモーダルイメージングを併用し, 早期非侵襲的口腔癌の検出, 診断精度の向上, 臨床ワークフローの合理化による細胞病理学の進歩を図る。
開発されたパイプラインは他の細胞学的設定にも適用できる。
私たちのコードとデータセットは、さらなる研究のためにオンラインで利用可能です。
関連論文リスト
- TopOC: Topological Deep Learning for Ovarian and Breast Cancer Diagnosis [3.262230127283452]
トポロジカルデータ分析は、異なる色チャネルにわたるトポロジカルパターンの評価を通じて重要な情報を抽出することで、ユニークなアプローチを提供する。
卵巣癌と乳癌では, トポロジカルな特徴を取り入れることで, 腫瘍型の分化が著しく向上することが示唆された。
論文 参考訳(メタデータ) (2024-10-13T12:24:13Z) - Multi-modal Medical Image Fusion For Non-Small Cell Lung Cancer Classification [7.002657345547741]
非小細胞肺癌(NSCLC)は、世界中のがん死亡の主な原因である。
本稿では, 融合医療画像(CT, PET)と臨床健康記録, ゲノムデータとを合成する, マルチモーダルデータの革新的な統合について紹介する。
NSCLCの検出と分類精度の大幅な向上により,本研究は既存のアプローチを超越している。
論文 参考訳(メタデータ) (2024-09-27T12:59:29Z) - Boosting Medical Image-based Cancer Detection via Text-guided Supervision from Reports [68.39938936308023]
本研究では, 高精度ながん検出を実現するための新しいテキスト誘導学習法を提案する。
本手法は,大規模プレトレーニングVLMによる臨床知識の活用により,一般化能力の向上が期待できる。
論文 参考訳(メタデータ) (2024-05-23T07:03:38Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - Improved Multimodal Fusion for Small Datasets with Auxiliary Supervision [3.8750633583374143]
小型データセットによるマルチモーダル融合を改善するための3つの簡単な方法を提案する。
提案手法は実装が簡単で,画像と非画像のデータを用いた任意の分類タスクに適用可能である。
論文 参考訳(メタデータ) (2023-04-01T20:07:10Z) - Artificial-intelligence-based molecular classification of diffuse
gliomas using rapid, label-free optical imaging [59.79875531898648]
DeepGliomaは人工知能に基づく診断スクリーニングシステムである。
ディープグリオーマは、世界保健機関が成人型びまん性グリオーマ分類を定義するために使用する分子変化を予測することができる。
論文 参考訳(メタデータ) (2023-03-23T18:50:18Z) - RadioPathomics: Multimodal Learning in Non-Small Cell Lung Cancer for
Adaptive Radiotherapy [1.8161758803237067]
非小細胞肺癌に対する放射線治療成績を予測するため, マルチモーダルレイトフュージョン法を開発した。
実験により、AUCが90.9%ドルと同等のマルチモーダルパラダイムが、各ユニモーダルアプローチより優れていることが示された。
論文 参考訳(メタデータ) (2022-04-26T16:32:52Z) - Lymphocyte Classification in Hyperspectral Images of Ovarian Cancer
Tissue Biopsy Samples [94.37521840642141]
生検コアのハイパースペクトル画像に白血球画素を分割する機械学習パイプラインを提案する。
これらの細胞は臨床的に診断に重要であるが、いくつかの先行研究は正確なピクセルラベルを得るのが困難であるため、それらを組み込むのに苦労している。
論文 参考訳(メタデータ) (2022-03-23T00:58:27Z) - Oral cancer detection and interpretation: Deep multiple instance
learning versus conventional deep single instance learning [2.2612425542955292]
口腔癌(OC)診断の現在の医療基準は、口腔から採取した組織標本の組織学的検査である。
このアプローチを臨床ルーチンに導入するには、専門家の欠如や労働集約的な作業といった課題が伴う。
私たちは、患者1人あたりのラベルだけで癌を確実に検出できるAIベースの方法に興味を持っています。
論文 参考訳(メタデータ) (2022-02-03T15:04:26Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Unsupervised deep learning techniques for powdery mildew recognition
based on multispectral imaging [63.62764375279861]
本稿では,キュウリ葉の粉状ミドウを自動的に認識する深層学習手法を提案する。
マルチスペクトルイメージングデータに適用した教師なし深層学習技術に焦点をあてる。
本稿では, オートエンコーダアーキテクチャを用いて, 疾患検出のための2つの手法を提案する。
論文 参考訳(メタデータ) (2021-12-20T13:29:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。