Adaptive PII Mitigation Framework for Large Language Models
- URL: http://arxiv.org/abs/2501.12465v1
- Date: Tue, 21 Jan 2025 19:22:45 GMT
- Title: Adaptive PII Mitigation Framework for Large Language Models
- Authors: Shubhi Asthana, Ruchi Mahindru, Bing Zhang, Jorge Sanz,
- Abstract summary: This paper introduces an adaptive system for mitigating risk of Personally Identifiable Information (PII) and Sensitive Personal Information (SPI)
The system uses advanced NLP techniques, context-aware analysis, and policy-driven masking to ensure regulatory compliance.
Benchmarks highlight the system's effectiveness, with an F1 score of 0.95 for Passport Numbers.
- Score: 2.694044579874688
- License:
- Abstract: Artificial Intelligence (AI) faces growing challenges from evolving data protection laws and enforcement practices worldwide. Regulations like GDPR and CCPA impose strict compliance requirements on Machine Learning (ML) models, especially concerning personal data use. These laws grant individuals rights such as data correction and deletion, complicating the training and deployment of Large Language Models (LLMs) that rely on extensive datasets. Public data availability does not guarantee its lawful use for ML, amplifying these challenges. This paper introduces an adaptive system for mitigating risk of Personally Identifiable Information (PII) and Sensitive Personal Information (SPI) in LLMs. It dynamically aligns with diverse regulatory frameworks and integrates seamlessly into Governance, Risk, and Compliance (GRC) systems. The system uses advanced NLP techniques, context-aware analysis, and policy-driven masking to ensure regulatory compliance. Benchmarks highlight the system's effectiveness, with an F1 score of 0.95 for Passport Numbers, outperforming tools like Microsoft Presidio (0.33) and Amazon Comprehend (0.54). In human evaluations, the system achieved an average user trust score of 4.6/5, with participants acknowledging its accuracy and transparency. Observations demonstrate stricter anonymization under GDPR compared to CCPA, which permits pseudonymization and user opt-outs. These results validate the system as a scalable and robust solution for enterprise privacy compliance.
Related papers
- The Dual-use Dilemma in LLMs: Do Empowering Ethical Capacities Make a Degraded Utility? [54.18519360412294]
Large Language Models (LLMs) must balance between rejecting harmful requests for safety and accommodating legitimate ones for utility.
This paper presents a Direct Preference Optimization (DPO) based alignment framework that achieves better overall performance.
Our resulting model, LibraChem, outperforms leading LLMs including Claude-3, GPT-4o, and LLaMA-3 by margins of 13.44%, 7.16%, and 7.10% respectively.
arXiv Detail & Related papers (2025-01-20T06:35:01Z) - Powering LLM Regulation through Data: Bridging the Gap from Compute Thresholds to Customer Experiences [0.0]
This paper argues that current regulatory approaches, which focus on compute-level thresholds and generalized model evaluations, are insufficient to ensure the safety and effectiveness of specific LLM-based user experiences.
We propose a shift towards a certification process centered on actual user-facing experiences and the curation of high-quality datasets for evaluation.
arXiv Detail & Related papers (2025-01-12T16:20:40Z) - Privacy-Preserving Customer Support: A Framework for Secure and Scalable Interactions [0.0]
This paper introduces the Privacy-Preserving Zero-Shot Learning (PP-ZSL) framework, a novel approach leveraging large language models (LLMs) in a zero-shot learning mode.
Unlike conventional machine learning methods, PP-ZSL eliminates the need for local training on sensitive data by utilizing pre-trained LLMs to generate responses directly.
The framework incorporates real-time data anonymization to redact or mask sensitive information, retrieval-augmented generation (RAG) for domain-specific query resolution, and robust post-processing to ensure compliance with regulatory standards.
arXiv Detail & Related papers (2024-12-10T17:20:47Z) - Trustworthy AI: Securing Sensitive Data in Large Language Models [0.0]
Large Language Models (LLMs) have transformed natural language processing (NLP) by enabling robust text generation and understanding.
This paper proposes a comprehensive framework for embedding trust mechanisms into LLMs to dynamically control the disclosure of sensitive information.
arXiv Detail & Related papers (2024-09-26T19:02:33Z) - LegiLM: A Fine-Tuned Legal Language Model for Data Compliance [5.256747140296861]
LegiLM is a novel legal language model specifically tailored for consulting on data or information compliance.
It has been fine-tuned to automatically assess whether particular actions or events breach data security and privacy regulations.
LegiLM excels in detecting data regulation breaches, offering sound legal justifications, and recommending necessary compliance modifications.
arXiv Detail & Related papers (2024-09-09T02:06:52Z) - SORRY-Bench: Systematically Evaluating Large Language Model Safety Refusal Behaviors [64.9938658716425]
Existing evaluations of large language models' (LLMs) ability to recognize and reject unsafe user requests face three limitations.
First, existing methods often use coarse-grained of unsafe topics, and are over-representing some fine-grained topics.
Second, linguistic characteristics and formatting of prompts are often overlooked, like different languages, dialects, and more -- which are only implicitly considered in many evaluations.
Third, existing evaluations rely on large LLMs for evaluation, which can be expensive.
arXiv Detail & Related papers (2024-06-20T17:56:07Z) - FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
We introduce a holistic auditing framework that comprehensively evaluates synthetic datasets and AI models.
It focuses on preventing bias and discrimination, ensures fidelity to the source data, assesses utility, robustness, and privacy preservation.
We demonstrate the framework's effectiveness by auditing various generative models across diverse use cases.
arXiv Detail & Related papers (2023-04-21T09:03:18Z) - Distributed Machine Learning and the Semblance of Trust [66.1227776348216]
Federated Learning (FL) allows the data owner to maintain data governance and perform model training locally without having to share their data.
FL and related techniques are often described as privacy-preserving.
We explain why this term is not appropriate and outline the risks associated with over-reliance on protocols that were not designed with formal definitions of privacy in mind.
arXiv Detail & Related papers (2021-12-21T08:44:05Z) - Privacy Preservation in Federated Learning: An insightful survey from
the GDPR Perspective [10.901568085406753]
Article is dedicated to surveying on the state-of-the-art privacy techniques, which can be employed in Federated learning.
Recent research has demonstrated that retaining data and on computation in FL is not enough for privacy-guarantee.
This is because ML model parameters exchanged between parties in an FL system, which can be exploited in some privacy attacks.
arXiv Detail & Related papers (2020-11-10T21:41:25Z) - Trustworthy AI [75.99046162669997]
Brittleness to minor adversarial changes in the input data, ability to explain the decisions, address the bias in their training data, are some of the most prominent limitations.
We propose the tutorial on Trustworthy AI to address six critical issues in enhancing user and public trust in AI systems.
arXiv Detail & Related papers (2020-11-02T20:04:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.