PPO-Based Vehicle Control for Ramp Merging Scheme Assisted by Enhanced C-V2X
- URL: http://arxiv.org/abs/2501.12656v1
- Date: Wed, 22 Jan 2025 05:35:26 GMT
- Title: PPO-Based Vehicle Control for Ramp Merging Scheme Assisted by Enhanced C-V2X
- Authors: Qiong Wu, Maoxin Ji, Pingyi Fan, Kezhi Wang, Nan Cheng, Wen Chen, Khaled B. Letaief,
- Abstract summary: On-ramp merging presents a critical challenge in autonomous driving.
We propose a novel merging control scheme based on reinforcement learning.
We introduce an enhanced protocol leveraging Cellular Vehicle-to-Everything (C-V2X) Mode 4.
- Score: 36.19449852204522
- License:
- Abstract: On-ramp merging presents a critical challenge in autonomous driving, as vehicles from merging lanes need to dynamically adjust their positions and speeds while monitoring traffic on the main road to prevent collisions. To address this challenge, we propose a novel merging control scheme based on reinforcement learning, which integrates lateral control mechanisms. This approach ensures the smooth integration of vehicles from the merging lane onto the main road, optimizing both fuel efficiency and passenger comfort. Furthermore, we recognize the impact of vehicle-to-vehicle (V2V) communication on control strategies and introduce an enhanced protocol leveraging Cellular Vehicle-to-Everything (C-V2X) Mode 4. This protocol aims to reduce the Age of Information (AoI) and improve communication reliability. In our simulations, we employ two AoI-based metrics to rigorously assess the protocol's effectiveness in autonomous driving scenarios. By combining the NS3 network simulator with Python, we simulate V2V communication and vehicle control simultaneously. The results demonstrate that the enhanced C-V2X Mode 4 outperforms the standard version, while the proposed control scheme ensures safe and reliable vehicle operation during on-ramp merging.
Related papers
- Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
Connected Autonomous Vehicles (CAVs) have begun to open road testing around the world, but their safety and efficiency performance in complex scenarios is still not satisfactory.
This paper proposes CoDrivingLLM, an interactive and learnable LLM-driven cooperative driving framework.
arXiv Detail & Related papers (2024-09-19T14:36:00Z) - Reinforcement Learning with Latent State Inference for Autonomous On-ramp Merging under Observation Delay [6.0111084468944]
We introduce the Lane-keeping, Lane-changing with Latent-state Inference and Safety Controller (L3IS) agent.
L3IS is designed to perform the on-ramp merging task safely without comprehensive knowledge about surrounding vehicles' intents or driving styles.
We present an augmentation of this agent called AL3IS that accounts for observation delays, allowing the agent to make more robust decisions in real-world environments.
arXiv Detail & Related papers (2024-03-18T15:02:46Z) - V2X-Lead: LiDAR-based End-to-End Autonomous Driving with
Vehicle-to-Everything Communication Integration [4.166623313248682]
This paper presents a LiDAR-based end-to-end autonomous driving method with Vehicle-to-Everything (V2X) communication integration.
The proposed method aims to handle imperfect partial observations by fusing the onboard LiDAR sensor and V2X communication data.
arXiv Detail & Related papers (2023-09-26T20:26:03Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies [14.518558523319518]
Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
arXiv Detail & Related papers (2022-08-03T04:33:02Z) - Towards Robust On-Ramp Merging via Augmented Multimodal Reinforcement
Learning [9.48157144651867]
We present a novel approach for Robust on-ramp merge of CAVs via Augmented and Multi-modal Reinforcement Learning.
Specifically, we formulate the on-ramp merging problem as a Markov decision process (MDP) by taking driving safety, comfort driving behavior, and traffic efficiency into account.
To provide reliable merging maneuvers, we simultaneously leverage BSM and surveillance images for multi-modal observation.
arXiv Detail & Related papers (2022-07-21T16:34:57Z) - Eco-driving for Electric Connected Vehicles at Signalized Intersections:
A Parameterized Reinforcement Learning approach [6.475252042082737]
This paper proposes an eco-driving framework for electric connected vehicles (CVs) based on reinforcement learning (RL)
We show that our strategy can significantly reduce energy consumption by learning proper action schemes without any interruption of other human-driven vehicles (HDVs)
arXiv Detail & Related papers (2022-06-24T04:11:28Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - A Software Architecture for Autonomous Vehicles: Team LRM-B Entry in the
First CARLA Autonomous Driving Challenge [49.976633450740145]
This paper presents the architecture design for the navigation of an autonomous vehicle in a simulated urban environment.
Our architecture was made towards meeting the requirements of CARLA Autonomous Driving Challenge.
arXiv Detail & Related papers (2020-10-23T18:07:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.