Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies
- URL: http://arxiv.org/abs/2208.02249v1
- Date: Wed, 3 Aug 2022 04:33:02 GMT
- Title: Reinforcement Learning for Joint V2I Network Selection and Autonomous
Driving Policies
- Authors: Zijiang Yan and Hina Tabassum
- Abstract summary: Vehicle-to-Infrastructure (V2I) communication is becoming critical for the enhanced reliability of autonomous vehicles (AVs)
It is critical to simultaneously optimize the AVs' network selection and driving policies in order to minimize road collisions.
We develop a reinforcement learning framework to characterize efficient network selection and autonomous driving policies.
- Score: 14.518558523319518
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vehicle-to-Infrastructure (V2I) communication is becoming critical for the
enhanced reliability of autonomous vehicles (AVs). However, the uncertainties
in the road-traffic and AVs' wireless connections can severely impair timely
decision-making. It is thus critical to simultaneously optimize the AVs'
network selection and driving policies in order to minimize road collisions
while maximizing the communication data rates. In this paper, we develop a
reinforcement learning (RL) framework to characterize efficient network
selection and autonomous driving policies in a multi-band vehicular network
(VNet) operating on conventional sub-6GHz spectrum and Terahertz (THz)
frequencies. The proposed framework is designed to (i) maximize the traffic
flow and minimize collisions by controlling the vehicle's motion dynamics
(i.e., speed and acceleration) from autonomous driving perspective, and (ii)
maximize the data rates and minimize handoffs by jointly controlling the
vehicle's motion dynamics and network selection from telecommunication
perspective. We cast this problem as a Markov Decision Process (MDP) and
develop a deep Q-learning based solution to optimize the actions such as
acceleration, deceleration, lane-changes, and AV-base station assignments for a
given AV's state. The AV's state is defined based on the velocities and
communication channel states of AVs. Numerical results demonstrate interesting
insights related to the inter-dependency of vehicle's motion dynamics,
handoffs, and the communication data rate. The proposed policies enable AVs to
adopt safe driving behaviors with improved connectivity.
Related papers
- SPformer: A Transformer Based DRL Decision Making Method for Connected Automated Vehicles [9.840325772591024]
We propose a CAV decision-making architecture based on transformer and reinforcement learning algorithms.
A learnable policy token is used as the learning medium of the multi-vehicle joint policy.
Our model can make good use of all the state information of vehicles in traffic scenario.
arXiv Detail & Related papers (2024-09-23T15:16:35Z) - Generalized Multi-Objective Reinforcement Learning with Envelope Updates in URLLC-enabled Vehicular Networks [12.323383132739195]
We develop a novel multi-objective reinforcement learning framework to jointly optimize wireless network selection and autonomous driving policies.
The proposed framework is designed to maximize the traffic flow and minimize collisions by controlling the vehicle's motion dynamics.
The proposed policies enable autonomous vehicles to adopt safe driving behaviors with improved connectivity.
arXiv Detail & Related papers (2024-05-18T16:31:32Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
Connected and autonomous vehicles (CAVs) can reduce human errors in traffic accidents, increase road efficiency, and execute various tasks. Reaping these benefits requires CAVs to autonomously navigate to target destinations.
This article proposes solutions using the convergence of communication theory, control theory, and machine learning to enable effective and secure CAV navigation.
arXiv Detail & Related papers (2023-07-05T21:38:36Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - AI-aided Traffic Control Scheme for M2M Communications in the Internet
of Vehicles [61.21359293642559]
The dynamics of traffic and the heterogeneous requirements of different IoV applications are not considered in most existing studies.
We consider a hybrid traffic control scheme and use proximal policy optimization (PPO) method to tackle it.
arXiv Detail & Related papers (2022-03-05T10:54:05Z) - Learning to Help Emergency Vehicles Arrive Faster: A Cooperative
Vehicle-Road Scheduling Approach [24.505687255063986]
Vehicle-centric scheduling approaches recommend optimal paths for emergency vehicles.
Road-centric scheduling approaches aim to improve the traffic condition and assign a higher priority for EVs to pass an intersection.
We propose LEVID, a cooperative VehIcle-roaD scheduling approach including a real-time route planning module and a collaborative traffic signal control module.
arXiv Detail & Related papers (2022-02-20T10:25:15Z) - Learning Interaction-aware Guidance Policies for Motion Planning in
Dense Traffic Scenarios [8.484564880157148]
This paper presents a novel framework for interaction-aware motion planning in dense traffic scenarios.
We propose to learn, via deep Reinforcement Learning (RL), an interaction-aware policy providing global guidance about the cooperativeness of other vehicles.
The learned policy can reason and guide the local optimization-based planner with interactive behavior to pro-actively merge in dense traffic while remaining safe in case the other vehicles do not yield.
arXiv Detail & Related papers (2021-07-09T16:43:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
We propose an intelligent optimization framework based on the Markov Decision Process (MDP) to help the AV make optimal decisions.
We then develop an effective learning algorithm leveraging recent advances of deep reinforcement learning techniques to find the optimal policy for the AV.
We show that the proposed transferable deep reinforcement learning framework reduces the obstacle miss detection probability by the AV up to 67% compared to other conventional deep reinforcement learning approaches.
arXiv Detail & Related papers (2021-05-28T08:45:37Z) - Federated Learning on the Road: Autonomous Controller Design for
Connected and Autonomous Vehicles [109.71532364079711]
A new federated learning (FL) framework is proposed for designing the autonomous controller of connected and autonomous vehicles (CAVs)
A novel dynamic federated proximal (DFP) algorithm is proposed that accounts for the mobility of CAVs, the wireless fading channels, and the unbalanced and nonindependent and identically distributed data across CAVs.
A rigorous convergence analysis is performed for the proposed algorithm to identify how fast the CAVs converge to using the optimal controller.
arXiv Detail & Related papers (2021-02-05T19:57:47Z) - Leveraging the Capabilities of Connected and Autonomous Vehicles and
Multi-Agent Reinforcement Learning to Mitigate Highway Bottleneck Congestion [2.0010674945048468]
We present an RL-based multi-agent CAV control model to operate in mixed traffic.
The results suggest that even at CAV percent share of corridor traffic as low as 10%, CAVs can significantly mitigate bottlenecks in highway traffic.
arXiv Detail & Related papers (2020-10-12T03:52:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.