A systematic data characteristic understanding framework towards physical-sensor big data challenges
- URL: http://arxiv.org/abs/2501.12720v1
- Date: Wed, 22 Jan 2025 08:49:44 GMT
- Title: A systematic data characteristic understanding framework towards physical-sensor big data challenges
- Authors: Zhipeng Ma, Bo Nørregaard Jørgensen, Zheng Grace Ma,
- Abstract summary: Recent advancements in sensor networks and the widespread adoption of IoT have led to the collection of physical-sensor data on an enormous scale.
To uncover big data challenges and enhance data quality, it is essential to quantitatively unveil data characteristics.
This paper proposes a systematic data characteristic framework based on a 6Vs model.
- Score: 0.9672182825841383
- License:
- Abstract: Big data present new opportunities for modern society while posing challenges for data scientists. Recent advancements in sensor networks and the widespread adoption of IoT have led to the collection of physical-sensor data on an enormous scale. However, significant challenges arise in high-quality big data analytics. To uncover big data challenges and enhance data quality, it is essential to quantitatively unveil data characteristics. Furthermore, the existing studies lack analysis of the specific time-related characteristics. Enhancing the efficiency and precision of data analytics through the big data lifecycle requires a comprehensive understanding of data characteristics to address the hidden big data challenges. To fill in the research gap, this paper proposes a systematic data characteristic framework based on a 6Vs model. The framework aims to unveil the data characteristics in terms of data volume, variety, velocity, veracity, value, and variability through a set of statistical indicators. This model improves the objectivity of data characteristic understanding by relying solely on data-driven indicators. The indicators related to time-related characteristics in physical-sensor data are also included. Furthermore, the big data challenges are linked to each dimension of the 6Vs model to gain a quantitative understanding of the data challenges. Finally, a pipeline is developed to implement the proposed framework, and two case studies are conducted to illustrate the process of understanding the physical-sensor data characteristics and making recommendations for data preprocessing to address the big data challenges. The proposed framework is able to analyze the characteristics of all physical-sensor data, therefore, identifying potential challenges in subsequent analytics, and providing recommendations for data preprocessing.
Related papers
- Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Computationally and Memory-Efficient Robust Predictive Analytics Using Big Data [0.0]
This study navigates through the challenges of data uncertainties, storage limitations, and predictive data-driven modeling using big data.
We utilize Robust Principal Component Analysis (RPCA) for effective noise reduction and outlier elimination, and Optimal Sensor Placement (OSP) for efficient data compression and storage.
arXiv Detail & Related papers (2024-03-27T22:39:08Z) - Data Augmentation in Human-Centric Vision [54.97327269866757]
This survey presents a comprehensive analysis of data augmentation techniques in human-centric vision tasks.
It delves into a wide range of research areas including person ReID, human parsing, human pose estimation, and pedestrian detection.
Our work categorizes data augmentation methods into two main types: data generation and data perturbation.
arXiv Detail & Related papers (2024-03-13T16:05:18Z) - Machine Learning Techniques for Sensor-based Human Activity Recognition with Data Heterogeneity -- A Review [0.8142555609235358]
Sensor-based Human Activity Recognition (HAR) is crucial in ubiquitous computing.
HAR confronts challenges, particularly in data distribution assumptions.
This review investigates how machine learning addresses data heterogeneity in HAR.
arXiv Detail & Related papers (2024-03-12T22:22:14Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Exploring the Potential of AI-Generated Synthetic Datasets: A Case Study
on Telematics Data with ChatGPT [0.0]
This research delves into the construction and utilization of synthetic datasets, specifically within the telematics sphere, leveraging OpenAI's powerful language model, ChatGPT.
To illustrate this data creation process, a hands-on case study is conducted, focusing on the generation of a synthetic telematics dataset.
arXiv Detail & Related papers (2023-06-23T15:15:13Z) - LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting [65.71129509623587]
Road traffic forecasting plays a critical role in smart city initiatives and has experienced significant advancements thanks to the power of deep learning.
However, the promising results achieved on current public datasets may not be applicable to practical scenarios.
We introduce the LargeST benchmark dataset, which includes a total of 8,600 sensors in California with a 5-year time coverage.
arXiv Detail & Related papers (2023-06-14T05:48:36Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - TRoVE: Transforming Road Scene Datasets into Photorealistic Virtual
Environments [84.6017003787244]
This work proposes a synthetic data generation pipeline to address the difficulties and domain-gaps present in simulated datasets.
We show that using annotations and visual cues from existing datasets, we can facilitate automated multi-modal data generation.
arXiv Detail & Related papers (2022-08-16T20:46:08Z) - Occams Razor for Big Data? On Detecting Quality in Large Unstructured
Datasets [0.0]
New trend towards analytic complexity represents a severe challenge for the principle of parsimony or Occams Razor in science.
Computational building block approaches for data clustering can help to deal with large unstructured datasets in minimized computation time.
The review concludes on how cultural differences between East and West are likely to affect the course of big data analytics.
arXiv Detail & Related papers (2020-11-12T16:06:01Z) - Towards an Integrated Platform for Big Data Analysis [4.5257812998381315]
This paper presents the vision of an integrated plat-form for big data analysis that combines all these aspects.
Main benefits of this approach are an enhanced scalability of the whole platform, a better parameterization of algorithms, and an improved usability during the end-to-end data analysis process.
arXiv Detail & Related papers (2020-04-27T03:15:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.