論文の概要: Generation of Standardized E-Learning Contents from Digital Medical Collections
- arxiv url: http://arxiv.org/abs/2501.12794v1
- Date: Wed, 22 Jan 2025 10:55:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:11.005758
- Title: Generation of Standardized E-Learning Contents from Digital Medical Collections
- Title(参考訳): デジタル医療コレクションから標準化されたeラーニングコンテンツの生成
- Authors: Felix Buendía, Joaquín Gayoso-Cabada, José-Luis Sierra,
- Abstract要約: 既存のオンライン医療コレクションで利用可能な膨大な医療知識を、最も人気のあるeラーニングプラットフォームに統合可能な標準学習パッケージに変換するためのアプローチについて説明する。
このアプローチの核心は、Clarvyと呼ばれるツールで、医療コレクションのコンテンツ片を検索し、これらのコンテンツを意味のある学習単位に変換し、それを標準化された学習パッケージの形でエクスポートすることを可能にする。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this paper, we describe an approach to transforming the huge amount of medical knowledge available in existing online medical collections into standardized learning packages ready to be integrated into the most popular e-learning platforms. The core of our approach is a tool called Clavy, which makes it possible to retrieve pieces of content in medical collections, to transform this content into meaningful learning units, and to export it in the form of standardized learning packages. In addition to describing the approach, we demonstrate its feasibility by applying it to the generation of IMS content packages from MedPix, a popular online database of medical cases in the domain of radiology.
- Abstract(参考訳): 本稿では,既存のオンライン医療コレクションにある膨大な医療知識を,最も人気のあるeラーニングプラットフォームに統合可能な標準学習パッケージに変換するアプローチについて述べる。
このアプローチの核心は、Clarvyと呼ばれるツールで、医療コレクションのコンテンツ片を検索し、これらのコンテンツを意味のある学習単位に変換し、それを標準化された学習パッケージの形でエクスポートすることを可能にする。
本手法の解説に加えて,放射線学領域における医療事例のオンラインデータベースであるMedPixからIMSコンテンツパッケージの生成に適用することで,その実現可能性を示す。
関連論文リスト
- LIMIS: Towards Language-based Interactive Medical Image Segmentation [58.553786162527686]
LIMISは、最初の純粋言語に基づく対話型医療画像分割モデルである。
我々は、Grounded SAMを医療領域に適応させ、言語に基づくモデルインタラクション戦略を設計する。
LIMISを3つの公開医療データセット上で,パフォーマンスとユーザビリティの観点から評価した。
論文 参考訳(メタデータ) (2024-10-22T12:13:47Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKIはデータのプライバシーを守るだけでなく、医療基盤モデルの能力を高める。
FEDMEKIは、医療ファンデーションモデルに対して、直接データを公開することなく、幅広い医療知識から学ぶことを可能にする。
論文 参考訳(メタデータ) (2024-08-17T15:18:56Z) - Document-level Clinical Entity and Relation Extraction via Knowledge Base-Guided Generation [0.869967783513041]
統一医療言語システム(UMLS)の知識ベースを利用して医療概念を正確に識別する。
本フレームワークは、テキストに関連するUMLS概念を選択し、エンティティを抽出する際の言語モデルガイドのプロンプトと組み合わせる。
論文 参考訳(メタデータ) (2024-07-13T22:45:46Z) - Boosting Biomedical Concept Extraction by Rule-Based Data Augmentation [26.72525935008653]
文書レベルのバイオメディカル概念抽出は、ある文書で言及されているバイオメディカル概念を識別するタスクである。
近年,この課題に対する事前学習型言語モデルの導入が進んでいる。
既存のルールベースの概念マッピングシステムであるMetaMapLiteを用いて,PubMed と PMC から擬似アノテーション付きデータを生成する。
論文 参考訳(メタデータ) (2024-07-03T00:00:21Z) - Medical Vision-Language Pre-Training for Brain Abnormalities [96.1408455065347]
本稿では,PubMedなどの公共リソースから,医用画像・テキスト・アライメントデータを自動的に収集する方法を示す。
特に,まず大きな脳画像テキストデータセットを収集することにより,事前学習プロセスの合理化を図るパイプラインを提案する。
また,医療領域におけるサブフィギュアをサブキャプションにマッピングするというユニークな課題についても検討した。
論文 参考訳(メタデータ) (2024-04-27T05:03:42Z) - OpenMEDLab: An Open-source Platform for Multi-modality Foundation Models
in Medicine [55.29668193415034]
マルチモダリティ基盤モデルのためのオープンソースプラットフォームであるOpenMEDLabについて紹介する。
これは、最前線臨床および生体情報学応用のための大規模言語とビジョンモデルを刺激し、微調整する先駆的な試みの解決策をカプセル化する。
様々な医用画像のモダリティ、臨床テキスト、タンパク質工学など、事前訓練された基礎モデル群へのアクセスが可能である。
論文 参考訳(メタデータ) (2024-02-28T03:51:02Z) - MedSumm: A Multimodal Approach to Summarizing Code-Mixed Hindi-English
Clinical Queries [16.101969130235055]
本稿では,Multimodal Medical Codemixed Question Summarization MMCQSデータセットを紹介する。
このデータセットは、ヒンディー語と英語の混成医療クエリと視覚支援を組み合わせたものだ。
データセット、コード、トレーニング済みのモデルを公開します。
論文 参考訳(メタデータ) (2024-01-03T07:58:25Z) - CLIPSyntel: CLIP and LLM Synergy for Multimodal Question Summarization
in Healthcare [16.033112094191395]
MMQS(Multimodal Medical Question Summarization)データセットを紹介する。
このデータセットは、医用クエリと視覚補助とを組み合わせ、患者のニーズに対するより豊かでニュアンスな理解を促進する。
また、医学的障害を識別し、関連するコンテキストを生成し、医療概念をフィルタリングし、視覚的に認識された要約を作成する4つのモジュールからなるフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-16T03:02:05Z) - Zero-Shot Medical Information Retrieval via Knowledge Graph Embedding [27.14794371879541]
本稿では、ゼロショット医療情報検索(MIR)の新しいアプローチであるMedFusionRankを紹介する。
提案手法は、学習済みのBERTスタイルのモデルを用いて、コンパクトだが情報的なキーワードを抽出する。
これらのキーワードは、医療知識グラフ内の概念エンティティにリンクすることで、ドメイン知識に富む。
論文 参考訳(メタデータ) (2023-10-31T16:26:33Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
国際疾病分類 (icd) は、世界中で臨床コーディングに使われているデファクトコードである。
これらのコードにより、医療提供者は償還を請求し、診断情報の効率的な保管と検索を容易にします。
提案手法は,日常的な医学データと科学論文の外部知識を用いて,効果的に単語ベクトルを訓練することにより,神経モデルの性能を高める。
論文 参考訳(メタデータ) (2021-02-26T17:49:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。