論文の概要: Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
- arxiv url: http://arxiv.org/abs/2501.12895v1
- Date: Wed, 22 Jan 2025 14:15:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-23 13:30:09.492709
- Title: Test-Time Preference Optimization: On-the-Fly Alignment via Iterative Textual Feedback
- Title(参考訳): テスト時間優先最適化:反復的テキストフィードバックによるオンザフライアライメント
- Authors: Yafu Li, Xuyang Hu, Xiaoye Qu, Linjie Li, Yu Cheng,
- Abstract要約: 大規模言語モデル(LLM)は、優れたパフォーマンスを示すが、リトレーニングなしに素早く人間の好みに適応する柔軟性に欠ける。
本稿では,LLM出力と推論時の人間の嗜好を一致させるフレームワークであるテスト時間優先最適化(TPO)を紹介する。
本研究は,TPOをテスト時間優先最適化の実用的で軽量な代替手段として確立し,ハエのアライメントを実現している。
- 参考スコア(独自算出の注目度): 40.01227095901647
- License:
- Abstract: Large language models (LLMs) demonstrate impressive performance but lack the flexibility to adapt to human preferences quickly without retraining. In this work, we introduce Test-time Preference Optimization (TPO), a framework that aligns LLM outputs with human preferences during inference, removing the need to update model parameters. Rather than relying on purely numerical rewards, TPO translates reward signals into textual critiques and uses them as textual rewards to iteratively refine its response. Evaluations on benchmarks covering instruction following, preference alignment, safety, and mathematics reveal that TPO progressively improves alignment with human preferences. Notably, after only a few TPO steps, the initially unaligned Llama-3.1-70B-SFT model can surpass the aligned counterpart, Llama-3.1-70B-Instruct. Furthermore, TPO scales efficiently with both the search width and depth during inference. Through case studies, we illustrate how TPO exploits the innate capacity of LLM to interpret and act upon reward signals. Our findings establish TPO as a practical, lightweight alternative for test-time preference optimization, achieving alignment on the fly. Our code is publicly available at https://github.com/yafuly/TPO.
- Abstract(参考訳): 大規模言語モデル(LLM)は、優れたパフォーマンスを示すが、リトレーニングなしに素早く人間の好みに適応する柔軟性に欠ける。
本研究では,LLM出力を推論中に人間の嗜好と整合させるフレームワークであるテスト時間優先最適化(TPO)を導入し,モデルパラメータを更新する必要をなくした。
純粋に数値的な報酬に頼るのではなく、TPOは報酬信号をテキストの批評に翻訳し、それをテキストの報酬として利用して応答を反復的に洗練する。
インストラクション、選好アライメント、安全性、数学を含むベンチマーク評価では、TPOが人間の選好とのアライメントを徐々に改善していることが示されている。
特に、わずか数歩のTPOステップの後、最初は整列していないLlama-3.1-70B-SFTモデルは、整列したLlama-3.1-70B-インストラクトを超えることができる。
さらに、TPOは、推論中に探索幅と深さの両方で効率よくスケールする。
ケーススタディを通じて、TPOはLLMの自然能力を利用して報酬信号の解釈と行動を行う。
本研究は,TPOをテスト時間優先最適化の実用的で軽量な代替手段として確立し,ハエのアライメントを実現している。
私たちのコードはhttps://github.com/yafuly/TPO.comで公開されています。
関連論文リスト
- TPO: Aligning Large Language Models with Multi-branch & Multi-step Preference Trees [14.84379332031731]
本稿では、選好木からペア化された選好応答をサンプリングしないツリー選好最適化(TPO)を導入する。
TPOは、言語モデルのアライメントを、優先順位リストランキング問題として定式化し、ポリシーは、ランク付けされた優先順位リストからより効果的に学習することができる。
論文 参考訳(メタデータ) (2024-10-10T22:22:05Z) - Preference Alignment Improves Language Model-Based TTS [76.70693823683091]
選好アライメントアルゴリズムは、報酬モデルの嗜好に合わせてLMを調整し、生成されたコンテンツの望ましさを高める。
1.15B のパラメータ LM に基づく TTS モデルを用いて、嗜好の整合性は常に知性、話者類似性、代用主観的評価スコアを向上することを示した。
論文 参考訳(メタデータ) (2024-09-19T01:58:19Z) - ASFT: Aligned Supervised Fine-Tuning through Absolute Likelihood [14.512464277772194]
Aligned Supervised Fine-Tuning (ASFT)は、大規模言語モデルとペアワイズデータセットの整合性を改善する効果的なアプローチである。
ASFTは、DPO損失関数が人間の不適切なデータを生成する確率を減少させる問題を緩和する。
大規模な実験により、ASFTは効果的なアライメントアプローチであり、既存の手法より一貫して優れていることが示された。
論文 参考訳(メタデータ) (2024-09-14T11:39:13Z) - AIPO: Improving Training Objective for Iterative Preference Optimization [34.24211649396053]
合成データを用いた反復選好最適化について検討する。
我々は,反復選好最適化,すなわち合意対応反復選好最適化(AIPO)のための学習目標を提案する。
論文 参考訳(メタデータ) (2024-09-13T14:03:49Z) - Geometric-Averaged Preference Optimization for Soft Preference Labels [78.2746007085333]
LLMを人間の嗜好と整合させる多くのアルゴリズムは、人間の嗜好は二進的かつ決定論的であると仮定する。
本研究では,分散ソフトな選好ラベルを導入し,損失関数におけるLLM出力確率の重み付き幾何平均を用いて直接選好最適化(DPO)を改善する。
論文 参考訳(メタデータ) (2024-09-10T17:54:28Z) - Comparing Bad Apples to Good Oranges: Aligning Large Language Models via Joint Preference Optimization [105.3612692153615]
命令応答対に対して協調的に好みを抽出する新しい軸を提案する。
命令と応答ペアを併用することで、大きな言語モデルのアライメントを大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-31T02:05:40Z) - FIPO: Free-form Instruction-oriented Prompt Optimization with Preference Dataset and Modular Fine-tuning Schema [36.65009632307124]
大規模言語モデル(LLM)のタスク性能向上のためのFIPO(Free-from Instruction-oriented Prompt Optimization)を提案する。
FIPOはモジュール型のAPOテンプレートを使用して、単純で最適化されたプロンプトを生成するために、ナイーブなタスク命令、オプションの命令応答、オプションの接地真理を動的に統合する。
5つの公開ベンチマークと6つのテストモデルでFIPOフレームワークを検証する。
論文 参考訳(メタデータ) (2024-02-19T03:56:44Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) は、同一のプロンプトと関連するプロンプトの両方から、より多く、あまり好まれない応答を識別するように設計されている。
RPOは、大きな言語モデルをユーザの好みに合わせて調整し、トレーニングプロセスにおける適応性を改善する優れた能力を示している。
論文 参考訳(メタデータ) (2024-02-12T22:47:57Z) - LiPO: Listwise Preference Optimization through Learning-to-Rank [62.02782819559389]
ポリシーは、プロンプトによってランク付けされた妥当な応答のリストからより効果的に学習することができる。
LiPO-$lambda$ は DPO 変種と SLiC をいくつかの選好アライメントタスクにおいて明確なマージンで上回ることを示す。
論文 参考訳(メタデータ) (2024-02-02T20:08:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。