論文の概要: AIPO: Improving Training Objective for Iterative Preference Optimization
- arxiv url: http://arxiv.org/abs/2409.08845v1
- Date: Fri, 13 Sep 2024 14:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:19:29.643061
- Title: AIPO: Improving Training Objective for Iterative Preference Optimization
- Title(参考訳): AIPO: 反復的推論最適化のためのトレーニング目的の改善
- Authors: Yaojie Shen, Xinyao Wang, Yulei Niu, Ying Zhou, Lexin Tang, Libo Zhang, Fan Chen, Longyin Wen,
- Abstract要約: 合成データを用いた反復選好最適化について検討する。
我々は,反復選好最適化,すなわち合意対応反復選好最適化(AIPO)のための学習目標を提案する。
- 参考スコア(独自算出の注目度): 34.24211649396053
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preference Optimization (PO), is gaining popularity as an alternative choice of Proximal Policy Optimization (PPO) for aligning Large Language Models (LLMs). Recent research on aligning LLMs iteratively with synthetic or partially synthetic data shows promising results in scaling up PO training for both academic settings and proprietary trained models such as Llama3. Despite its success, our study shows that the length exploitation issue present in PO is even more severe in Iterative Preference Optimization (IPO) due to the iterative nature of the process. In this work, we study iterative preference optimization with synthetic data. We share the findings and analysis along the way of building the iterative preference optimization pipeline. More specifically, we discuss the length exploitation issue during iterative preference optimization and propose our training objective for iterative preference optimization, namely Agreement-aware Iterative Preference Optimization (AIPO). To demonstrate the effectiveness of our method, we conduct comprehensive experiments and achieve state-of-the-art performance on MT-Bench, AlpacaEval 2.0, and Arena-Hard. Our implementation and model checkpoints will be made available at https://github.com/bytedance/AIPO.
- Abstract(参考訳): 優先度最適化(PO)は、大規模言語モデル(LLM)の整合化のためのPPO(Proximal Policy Optimization)に代わる選択肢として人気を集めている。
LLMを合成データや部分合成データと反復的に整合させる最近の研究は、学術的な設定とLlama3のような独自のトレーニングモデルの両方でPOトレーニングをスケールアップする有望な結果を示している。
その成功にもかかわらず、本研究は、POに現れる長さ利用の問題が、反復的優先度最適化(IPO)において、プロセスの反復的性質によりさらに深刻であることを示している。
本研究では,合成データを用いた反復的選好最適化について検討する。
我々は、反復的な選好最適化パイプラインを構築する過程で、結果と分析を共有します。
より具体的には、反復選好最適化における長さ利用の問題について議論し、反復選好最適化のためのトレーニング目標、すなわち、合意対応反復選好最適化(AIPO)を提案する。
本手法の有効性を実証するため,MT-Bench,AlpacaEval 2.0,Arena-Hardで総合実験を行い,最先端性能を実現した。
私たちの実装とモデルチェックポイントはhttps://github.com/bytedance/AIPO.orgで公開されます。
関連論文リスト
- Accelerated Preference Optimization for Large Language Model Alignment [60.22606527763201]
Reinforcement Learning from Human Feedback (RLHF) は、大きな言語モデル(LLM)を人間の好みに合わせるための重要なツールとして登場した。
直接選好最適化(DPO)は、報酬関数を明示的に見積もることなく、ポリシー最適化問題としてRLHFを定式化する。
本稿では,既存の最適化アルゴリズムを統一したAPO(Accelerated Preference Optimization)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-08T18:51:01Z) - Self-supervised Preference Optimization: Enhance Your Language Model with Preference Degree Awareness [27.43137305486112]
本稿では,自己監督的選好度損失とアライメント損失を組み合わせた自己監督的選好度損失を構成する,新しい自己監督的選好最適化(SPO)フレームワークを提案する。
その結果,SPOを既存の好み最適化手法とシームレスに統合し,最先端性能を実現することができた。
論文 参考訳(メタデータ) (2024-09-26T12:37:26Z) - Discovering Preference Optimization Algorithms with and for Large Language Models [50.843710797024805]
オフライン優先最適化は、LLM(Large Language Model)出力の品質を向上・制御するための重要な手法である。
我々は、人間の介入なしに、新しい最先端の選好最適化アルゴリズムを自動で発見する客観的発見を行う。
実験は、ロジスティックと指数的損失を適応的にブレンドする新しいアルゴリズムであるDiscoPOPの最先端性能を示す。
論文 参考訳(メタデータ) (2024-06-12T16:58:41Z) - Two Optimizers Are Better Than One: LLM Catalyst Empowers Gradient-Based Optimization for Prompt Tuning [69.95292905263393]
我々は,勾配に基づく最適化と大規模言語モデル(MsLL)が相互補完的であることを示し,協調的な最適化手法を提案する。
私たちのコードはhttps://www.guozix.com/guozix/LLM-catalystでリリースされています。
論文 参考訳(メタデータ) (2024-05-30T06:24:14Z) - Localized Zeroth-Order Prompt Optimization [54.964765668688806]
そこで我々は,ZOPO(Localized zeroth-order prompt optimization)という新しいアルゴリズムを提案する。
ZOPOはニューラル・タンジェント・カーネルをベースとしたガウス法を標準ゼロ階次最適化に取り入れ、高速な局所最適探索を高速化する。
注目すべきは、ZOPOは最適化性能とクエリ効率の両方の観点から、既存のベースラインを上回っていることだ。
論文 参考訳(メタデータ) (2024-03-05T14:18:15Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
本稿では,大規模言語モデル(LLM)に基づくプロンプトの設計について検討する。
モデルパラメータ学習における2つの重要な要素を同定する。
特に、勾配に基づく最適化から理論的な枠組みや学習手法を借用し、改良された戦略を設計する。
論文 参考訳(メタデータ) (2024-02-27T15:05:32Z) - Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
嗜好データから直接ポリシーを最適化するために、直接選好最適化(DPO)が提案された。
問題の最適解に基づいて導出されたDPOが,現実の最適解の妥協平均探索近似に繋がることを示す。
本稿では、アライメント目的の効率的な精度最適化(EXO)を提案する。
論文 参考訳(メタデータ) (2024-02-01T18:51:54Z) - From Function to Distribution Modeling: A PAC-Generative Approach to
Offline Optimization [30.689032197123755]
本稿では、オフラインデータ例の集合を除いて目的関数が不明なオフライン最適化の問題について考察する。
未知の目的関数を学習して最適化するのではなく、より直感的で直接的な視点で、最適化は生成モデルからサンプリングするプロセスと考えることができる。
論文 参考訳(メタデータ) (2024-01-04T01:32:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。